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My research interests lie in the area of geometric group theory, which aims to understand finitely
presented groups via their intrinsic geometric and topological properties. More specifically, I focus
on the study of random groups in the density model introduced by M. Gromov in [Gro93, §9]. I am
also interested in A. Zuk’s triangular presentation model of random groups [Żuk03] and Gromov’s
expander graph model of random groups [Gro03].

In general, a random group can be defined as a random variable with values in a given set of
finitely presented groups (cf. [Gro03, §1.9], [Tsa22b, Defnition 1]). There are two main objectives
in the study of random groups: exhibitions of generic properties for finitely presented groups, such
as G. Arzhantseva and A. Ol’shanskii’s result in [AO96]; and constructions of exotic examples of
groups with surprising properties, such as the Gromov monster group introduced in [Gro03].

In the density model, a random group is defined by a finite presentation where the set of generators
is fixed and a density parameter d ∈ [0, 1] is given to determine the number of randomly chosen
relators. The main concerns of the density model are the phase transitions: when the density d passes
through some critical value, certain properties of the random group change dramatically. The first
example is in [Gro93, §9.B], at density d = 1/2: when d passes through 1/2, the random group goes
from a non-elementary hyperbolic group of cohomological dimension 2, to a trivial group.

In [Gro03, §1.9], Gromov gave a list of problems concerning phase transitions in (more generally
defined) random groups. In particular, the problem (iv) asks for ”existence/nonexistence of non-free
subgroups”, which inspired one of the main topics in my research ([Tsa21b], §2).

The sections §1, §2 and §3 concern the results of my Ph.D. thesis [Tsa22b], which are respec-
tively the intersection formula, a phase transition for free subgroups (the Freiheitssatz), and a phase
transition for van Kampen diagrams. In §2 and §3, further goals to complete the projects are pre-
sented. The sections §4 and §5 are two new research projects, which concern respectively the parallel
geodesics in random groups and the study of the expander graph model. Roughly speaking, there are
currently four research directions, listed below.

• Complete the strong Freiheitssatz phase transition: Prove or disprove that for a random group
with m generators at density d < dr = min{1/2, 1− log2m−1(2r−1)}, every subgroup of rank
r is free (§2).

• Seek applications for the phase transition for the existence of van Kampen 2-complexes. That
is, construct non-planar van Kampen 2-complexes in random groups that provide “interesting”
group properties (§3).

• Study intrinsic geometric properties of random groups. More precisely, for a random group at
density d, express (or estimate) the maximal number of parallel geodesics and the injectivity
radius of its Cayley graph as functions of the density d (§4).
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• Study the expander graph model of random groups. Prove or disprove the two speculated
phase transitions, one for the C ′(λ) graphical small cancellation condition, and the other for
hyperbolicity-triviality (§5).

§1 The intersection formula for random subsets

The density of a subset A in a finite set E is defined by densA := log|E|(|A|). The intersection
formula for random subsets is stated by M. Gromov in [Gro93, §9]: ”Random subsets” A and B of a
finite set E satisfy dens(A ∩ B) = densA + densB − 1. It is an essential probabilistic tool to deal
with phase transitions in random groups. However, neither a precise definition of a random subset
with density nor a detailed proof of the intersection formula was given by the author.

My first contribution in the area of random groups is the article [Tsa21a], in which we established
a general framework for the study of random subsets with densities, and proved the intersection
formula for the class of random subsets that are densable and permutation invariant (defined in
[Gro93, p.272]). The same formula for the intersection between a random subset and a fixed subset
is also proved.

Moreover, we established the multidimensional intersection formula: For any integer k ≥ 2,
if X is a fixed subset of Ek satisfying the d-small intersection condition introduced in [Tsa21a,
§3.1] and R is a random subset of a finite set E and , then the intersection formula still holds:
dens(X ∩ Rk) = densX + densRk − 1. This result is useful for proving the phase transition of the
C ′(λ) small cancellation condition in random groups [Tsa21a, Theorem 3], and is the key to proving
our phase transition for the existence of van Kampen 2-complexes [Tsa22a, Theorem 1.5].

§2 Free subgroups: the Freiheitssatz in random groups

The study of free subgroups in finitely generated groups is a classical subject in combinatorial
and geometric group theory.

The Freiheitssatz (freedom theorem in German) is a fundamental theorem in this field, proposed
by M. Dehn and proved by W. Magnus in his doctoral thesis [Mag30] in 1930 (see [LS77, Ch. II.5]).
The theorem states that for a group presentation with m generators and one cyclically reduced relator,
if the last generator appears in the single relator, then the first m− 1 generators freely generate a free
subgroup. In [AO96], G. Arzhantseva and A. Ol’shanskii proved a strong version of the Freiheitssatz
in few-relator random groups: every (m− 1)-generated subgroup of a m-generated few-relator ran-
dom group is free. As an application of the intersection formula, it was shown in [Tsa21a] that the
“every (m−1)-generated subgroup is free” property holds for m-generated random groups at density
d < 1

120m2 ln(2m)
, while this density is not big enough to achieve a phase transition.

The phase transition for the Freiheitssatz in random groups. We say that a group presenta-
tion with m generators satisfies the Freiheitssatz property if the first m− 1 generators freely generate
a free subgroup. The main result of my second article [Tsa21b] is to highlight a new phase transition
phenomenon for the Freiheitssatz property in random groups. More generally, for any integer r be-
tween 1 and m − 1, there is a phase transition: the r first generators generate either a free subgroup
or the whole group.

Theorem 1 (T., [Tsa21b, Theorem 1]). Let m ≥ 2 and 1 ≤ r ≤ m − 1. Let G be a random group
with m generators at density d. There is a phase transition at density

dr = min

{
1

2
, 1− log2m−1(2r − 1)

}
.

(i) If d < dr, then the first r generators generate a free subgroup of G.
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(ii) If d > dr, then the first r generators generate a the whole G.

There is an interesting corollary.

Corollary 2 (T., [Tsa21b, Corollary 2]). If dr < d < dr−1, then the random group G admits a
presentation with r generators (and the same number of relators) satisfying the Freiheitssatz property.

The “strong” Freiheitssatz property. Inspired by Arzhantseva-Ol’shanskii’s work [AO96], al-
though only “the first r generators” is stated in the case d < dr of Theorem 1, the freeness may
hold for “every r-generated subgroup”. The further goal of completing the project is to answer the
following question.

Question 3. Is dr the critical density for the property “every r-generated subgroup is free”?

If the answer to this question is positive, then a random group with m generators at density
dr < d < dr−1 is of rank r.

In [Tsa21b], we proved that when d < dr, every subgroup generated by a reduced X-labeled
graph Γ with b1(Γ) ≤ r and |Γ| ≤ dr−d

5
ℓ (much smaller than the hyperbolicity constant) is free. An

early work of T. Delzant [Del91] provides the strategy to study the freeness of subgroups generated
by words much longer than the hyperbolicity constant (see also [Gro87, 5.3.A]). It remains the
subgroups generated by r words of intermediate length, but it seems to be the most difficult part.
Mixing the three scales of subgroups would be a sticky but feasible work.

§3 Existence of Van Kampen 2-complexes in random groups

The notion of a van Kampen diagram was introduced by E. van Kampen in [Kam33] to character-
ize if a particular word in the generators of a group given by a group presentation represents the iden-
tity element in that group. To prove the hyperbolicity of a random group at density d < 1/2 in [Gro93,
9.B], Gromov showed that with high probability, every bounded and reduced van Kampen diagram
D of a random group at density d satisfies the isoperimetric inequality |∂D| ≥ (1− 2d− s)|D|ℓ. The
non-reduced van Kampen 2-complex version of this inequality was thoroughly proved in [Tsa22a,
Chapter 2], adapting the result of D. Gruber and J. Mackay in [GM18, §2] for random triangular
groups.

The main results in the preprint [Tsa22a] is to highlight the phase transition for the existence of
van Kampen 2-complexes with a given geometric form ([Tsa22a, Definition 3.1]) in random groups.

The phase transition. We say that a 2-complex Y is fillable by a group presentation G if there
exists a reduced van Kampen 2-complex of G whose underlying 2-complex is Y . The fillability of 2-
complex Y is characterized by its critical density densc(Y ) ([Tsa22a, Definition 3.2]), and the phase
transition happens at density d = 1− densc(Y ).

Theorem 4 (T., [Tsa22a, Theorem 1.5]). Let Y be a 2-complex with a given geometric form. Let G
be a random group with m generators at density d.

(i) If d < 1− densc Y , then with high probability Y is not fillable by G.

(ii) If d > 1 − densc Y and Y is fillable by the set of all relators, then with high probability Y is
fillable by G.

The first assertion of this theorem implies Gromov’s isoperimetric inequality in random groups;
and the second assertion implies the converse, as given in the following corollary.
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Corollary 5 (T., [Tsa22a, Corollary 1.7]). Let G be a random group with m generators at density d,
with maximal relator length ℓ. Let s > 0 and K > 0. Let D be a finite planar 2-complex. If every
sub-2-complex D′ of D satisfies

|∂D′| ≥ (1− 2d+ s)|D′|ℓ,

then with high probability, D is fillable by G.

Applications. As an application of this result, we showed that there is a phase transition for
the C(p) small cancellation condition ([Tsa22a, Proposition 4.2]): If d < 1/(p + 1), then the C(p)
condition is satisfied; while if d > 1/(p+ 1), then the C(p) condition is not satisfied.

An analog of Corollary 5 for non-planar 2-complexes can also be established. Unfortunately, as
fillable 2-complexes in a random group at density d < 1/2 are all contractible to a graph ([Tsa22a,
Proposition 2.11]), no interesting application has been found.

Project 6. Seek interesting group presentation properties that can be characterized by certain non-
planar and contractible van Kampen 2-complexes with large enough critical densities (at least 1/2),
and apply them in random groups.

§4 Geometric properties in random groups: parallel geodesics and injectivity radius

The aim is to study geometric properties of random groups at densities d < 1/2 (which are
hyperbolic groups). One of the objectives is to adapt Gruber-Mackay’s triangular random group
results in [GM18] to the Gromov density model. The first steps are to estimate the maximal number
of parallel geodesics and the injectivity radius, as functions of the density d.

Parallel geodesics. For a hyperbolic group G, denote as P (G) the maximal number k such that
k geodesics can be parallel in its Cayley graph. If δ is the hyperbolicity constant, then there exit C
and a such that P (G) is bounded by C exp(aδ) (c.f. [CDP90, Chapitre 2]). Although not explicitly
written, the main technical point in [GM18, §3] is to show that for a random triangular group G at
density d < 11−

√
41

12
, there is a much smaller upper bound of P (G) depending only on the density d.

By similar arguments, the number of parallel geodesics in a regular random group at density
d < 1/4 can be bounded by a number that depends only on the density d.

Proposition 7. Let G be a random group at density d. If d < 1
4
, then with high probability

P (G) ≤ 2 +
2d

1− 4d
=: k(d).

Since the number k(d) diverges as the density d increases to 1/4, when d > 1/4, the maximal
number of parallel geodesics may no longer be uniformly bounded (i.e. P (G) may increase with the
relator length ℓ), and there may be a phase transition at density 1/4.

Guess 8. Let G be a random group at density d. If d > 1
4
, then for any integer k, with high probability

P (G) > k.

Injectivity radius. The injectivity radius of a hyperbolic group G (acting on its Cayley graph) is
the infimum of the stable lengths of its loxodromic elements (cf. [Cou16, Definition 3.34]). Accord-
ing to the arguments by T. Delzant in [Del96, Proposition 3.1], the stable lengths are at least 1/P (G).
As a consequence of Proposition 7, the injectivity radius of a random group at density d < 1/4 is at
least 1/k(d). Moreover, we have the following guess.
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Guess 9. Let G be a random group at density d. If d < 1/4, then with high probability the injectivity
radius of G is 1.

On the other hand, at density d > 1/4, as the number of parallel geodesics P (G) may diverge
according to Guess 8, the injectivity radius may converge to 0.

Guess 10. Let G be a random group at density d. If d > 1/4, then for any s > 0, with high probability
the injectivity radius of G is smaller than s.

The Burnside problem in random groups. The main result of [GM18] concerns the Burnside
problem in triangular random groups. They showed that at small enough densities, for n large enough,
the n-periodic Burnside quotient of a random triangular group is infinite.

Theorem 11 (Gruber-Mackay, [GM18, Theorem 1.2]). Denote G(n, d) as the n-periodic Burnside
quotient of a random triangular at density d. For any d0 < 11−

√
41

12
≈ 0.38307, there exists an integer

n0 ∈ N such that for any 0 < d ≤ d0 and any n ≥ n0, with high probability the random group
G(n, d) is infinite.

This theorem is proved by establishing uniform bounds on acylindricity constants of triangular
random groups, where the maximal number of parallel geodesics is involved (cf. [GM18, Theorem
1.4], see also [Cou16, Proposition 6.1]). We may ask the same question in the Gromov density model
of random groups.

Question 12. For any d0 < 1/2, does there exist n0 ∈ N such that for any 0 < d ≤ d0 and any
n ≥ n0, with high probability the n-periodic Burnside quotient of a random group at density d is
infinite?

Proposition 7 is not enough to answer this question, since there is an essential difference between
the triangular density model and the Gromov density model: The hyperbolicity constant of (the Cay-
ley graph of) a random triangular group at density d < 1/2 is bounded by 12

1−2d
, depending only on

the density d. While the hyperbolicity constant for a regular random group at density d < 1/2 is
4ℓ

1−2d
, which grows with the maximal relator length ℓ.

§5 The expander graph model of random groups

In the seminal article “Random walk in random groups” [Gro03], Gromov constructed a finitely
presented group that contains coarsely an infinite expander graph but is not coarsely embedded into
any Hilbert space. The construction involves random groups defined as quotients of hyperbolic
groups by randomly labeled expander graphs. Details are given by G. Arzhantseva and T. Delzant in
[AD08].

One of my research projects is to generalize an intermediate result in the construction, showing
that there are phase transitions in the expander graph random group model.

The expander graph random groups. Let X = {x1, . . . , xm} be a set of m ≥ 2 elements
and Fm the free group generated by X . Consider the randomly X-labeled expander graph Γ(p, q, j)
defined as follows: p, q ≥ 3 are distinct prime numbers and j ≥ 1 is an integer. Let C(p, q) be
the Cayley graph of the projective general linear group PGL2(q) over the field of q elements, for
a particular set of (p + 1) generators. It is a (p + 1)-regular expander graph on q2(q − 1) vertices
with girth (minimal simple cycle length) ρ(p, q) ∼ 4 logp q (c.f. [LPS88], [Val97]). The graph
Γ(p, q, j) is obtained from C(p, q) by dividing every edge into j small edges, and by randomly label-
ing every small (oriented) edge by X±. An expander graph random group is defined by the quotient
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Gq(m, p, j) := Fm/Γ(p, q, j), and we are interested in the asymptotic behaviors when the number q
goes to infinity.

When the number of divisions j is very large, an expander graph random group Gq(m, p, j)
looks like a low-density random group. In particular, such a group satisfies some small cancellation
condition and is hyperbolic.

Theorem 13 (M. Gromov, [Gro03]). For any integer m ≥ 2 and any prime number p ≥ 3:

(a) For any 0 < λ < 1, there exists jλ such that, with high probability,for any j ≥ jλ, the ran-
dom group Gq(m, p, j) satisfies the C ′(λ) graphical small cancellation condition (c.f. [AD08,
Definition 2.3]).

(b) There exists j0 large enough such that, with high probability, the random group Gq(m, p, j) is
non-elementary hyperbolic.

Are there phase transitions? There are three parameters in an expander graph random group:
the number of generators m, the integer p that decides the valency of the graph ((p + 1)-regular),
and the division number j. The aim is to find out an analog of density in the expander graph random
groups, and to exhibit phase transition phenomena in these groups.

Question 14. Are there phase transitions for the two properties of Theorem 13? More precisely, can
we find a critical jλ such that if j < jλ, then Gq(m, p, j) is not graphical C ′(λ); and a critical j0
such that if j < j0, then Gq(m, p, j) is not hyperbolic, or even trivial?

The same question can be proposed for any phase transition that appeared in the density model:
free subgroup problems, the existence of van Kampen diagrams, etc.

Here are some speculations on the question. Let us start with the C ′(λ) graphical small cancella-
tion condition.

Let λ < 1/2. As the graph C(p, q) is (p + 1)-regular with q3 = p
3
4j

ρq+O(1) vertices and he girth
of Γ(p, q, j) is ρq = 4j logp q + O(1) (c.f. [LPS88], [Val97]), the number of simple paths of length

λρq on Γ(p, q, j) is Cq = p
1
j (1+

3
4λ)λρq+O(1).

The set Eq of non-reduced words of X±
m of length λρq is with cardinality (2m)λρq . Let Aq be the

set of words obtained by reading the paths of Cq. It is a random subset of Eq.

Guess 15. The self-intersection of Aq does not affect its density. That is to say, the density of Aq is
given by the cardinality of Cq, which gives

dens(Aq) =
1

j

(
1 +

3

4λ

)
log2m p.

Let Bq be the set of words of length λρq that are equal to the identity in Fm. It is a fixed subset of
Eq with

dens(Bq) = log2m(2
√
2m− 1).

Studying the C ′(λ) graphical small cancellation condition is to ask if Aq has self-intersection after
reduction. For “regular enough” random subsets, it happens at the same density that Aq intersects Bq.

Guess 16. The intersection between the random subset Aq and the fixed subset Bq satisfies Gromov’s
intersection formula, and Aq has self-intersection after reduction if and only Aq intersects Bq.

If the above two guesses are true, then the C ′(λ) condition has a “phase transition”, determined
by the critical value dens(Aq) + dens(Bq) that equals to

c(m, p, j, λ) =
1

j

(
1 +

3

4λ

)
log2m p+ log2m(2

√
2m− 1).
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Guess 17. If c(m, p, j, λ) < 1, then Gq(m, p, j) satisfies G′(λ); while if c(m, p, j, λ) > 1, then
Gq(m, p, j) does not satisfy C ′(λ).

The triviality-hyperbolicity phase transition is more complicated. For the hyperbolicity, we can
not rely on the small cancellation theory (that C ′(1/6) implies hyperbolicity). Establishing an isoperi-
metric inequality as in [Gro93, §9.B] and [Oll04, §2] seems to be the solution, but the study of abstract
van Kampen diagrams with non-reduced relators is still not clear.

Project 18. Establish an isoperimetric inequality for random group presentations with non-reduced
relators, in the density model.

Let Rq be the set of words read on simple cycles of Γ(p, q, j) of length between ρq and the
diameter of the graph. By estimating the first Betti number of the graph, we have

dens(Rq) =
7

4j
log2m p.

To show the triviality, we want to find two words in Rq that differ by one letter after reduction.
And again it happens at the same density that Rq intersects Bq, the set of words of length ρq that
equal to the identity in Fm, for “regular enough” random subsets. So this time the guess is that the
critical value is

c(m, p, j) =
7

4j
log2m p+ log2m(2

√
2m− 1).

Guess 19. If c(m, p, j) < 1, then Gq(m, p, j) is non-elementary hyperbolic; while if c(m, p, j) > 1,
then Gq(m, p, j) is trivial.

Remark that c(m, p, j) is the critical value for the C ′(λ) condition with “λ = 1”, which coincides
with the situation in the Gromov density model.
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[Żuk03] Andrzej Żuk. “Property (T) and Kazhdan constants for discrete groups”. In: Geometric
and Functional Analysis GAFA 13 (2003), pp. 643–670. DOI: 10.1007/s00039-003-0425-
8.

8

https://doi.org/10.1017/CBO9780511629273
https://doi.org/10.1007/s000390300002
https://doi.org/10.1007/s11856-021-2170-9
https://doi.org/10.2307/2371129
https://doi.org/10.1007/BF02126799
https://doi.org/10.1007/s00039-004-0470-y
https://doi.org/10.1007/s00039-004-0470-y
https://doi.org/10.4171/JCA/63
https://doi.org/10.1007/s00039-003-0425-8
https://doi.org/10.1007/s00039-003-0425-8

