Phase transitions in random groups:
 free subgroups and van Kampen 2-complexes

Tsung-Hsuan Tsai

Institut de Recherche Mathématique Avancée
Université de Strasbourg

12 Juillet 2022

Contents

1. Random groups and phase transitions
2. Main tool: The intersection formula
3. Free subgroups in random groups
4. Van Kampen diagrams in random groups
5. Open questions

Table of Contents

1. Random groups and phase transitions
2. Main tool: The intersection formula
3. Free subgroups in random groups
4. Van Kampen diagrams in random groups

Open questions

What is a random group?

Definition

A random group G is a random variable with values in a given (finite) set of groups.
For a group property P, we are interested in

$$
\operatorname{Pr}(G \text { satisfies } P)
$$

What is a random group?

Definition

A random group G is a random variable with values in a given (finite) set of groups.
For a group property P, we are interested in

$$
\operatorname{Pr}(G \text { satisfies } P)
$$

A random group is often constructed by a presentation with fixed generators and random relators:

$$
G=\langle\underbrace{x_{1}, \ldots, x_{m}}_{\text {fixed }} \mid \underbrace{r_{1} \ldots, r_{k}}_{\text {random }}\rangle .
$$

Relators considered are cyclically reduced.

Asymptotic behaviors

We are interested in the "asymptotic behaviors" when the maximal relator length $\ell=\max \left\{\left|r_{1}\right|, \ldots,\left|r_{k}\right|\right\}$ goes to infinity.

Asymptotic behaviors

We are interested in the "asymptotic behaviors" when the maximal relator length $\ell=\max \left\{\left|r_{1}\right|, \ldots,\left|r_{k}\right|\right\}$ goes to infinity.

Definition

Let $\left(G_{\ell}\right)_{\ell \geq 1}$ be a sequence of random groups defined by

$$
G_{\ell}=\left\langle x_{1}, \ldots, x_{m} \mid R_{\ell}\right\rangle
$$

where R_{ℓ} is a random set of cyclically reduced relators of lengths at most ℓ.
Let $\left(P_{\ell}\right)_{\ell \geq 1}$ be a sequence of group properties. We say that G_{ℓ} satisfies P_{ℓ} asymptotically almost surely (a.a.s.) if

$$
\operatorname{Pr}\left(G_{\ell} \text { satisfies } P_{\ell}\right) \underset{\ell \rightarrow \infty}{\longrightarrow} 1
$$

The density model of random groups

Definition (Gromov 1993)

Let $m \geq 2, d \in[0,1]$. A sequence of random groups $\left(G_{\ell}(m, d)\right)$ with m generators at density d is defined by

$$
G_{\ell}(m, d)=\left\langle x_{1}, \ldots, x_{m} \mid R_{\ell}\right\rangle
$$

where R_{ℓ} is a random set of cyclically reduced relators of lengths at most ℓ, with

$$
\left|R_{\ell}\right|=\left\lfloor(2 m-1)^{d \ell}\right\rfloor,
$$

uniformly chosen among all possible choices.

The density model of random groups

Definition (Gromov 1993)

Let $m \geq 2, d \in[0,1]$. A sequence of random groups $\left(G_{\ell}(m, d)\right)$ with m generators at density d is defined by

$$
G_{\ell}(m, d)=\left\langle x_{1}, \ldots, x_{m} \mid R_{\ell}\right\rangle
$$

where R_{ℓ} is a random set of cyclically reduced relators of lengths at most ℓ, with

$$
\left|R_{\ell}\right|=\left\lfloor(2 m-1)^{d \ell}\right\rfloor,
$$

uniformly chosen among all possible choices.

Denote B_{ℓ} as the set of cyclically reduced words of length at most ℓ, we have $\left|B_{\ell}\right|=(2 m-1)^{\ell+O(1)}$, so $\left|R_{\ell}\right|=\left|B_{\ell}\right|^{d+o(1)}$.

The first result: phase transition at density $1 / 2$

Theorem (Gromov 1993)

- If $d>1 / 2$, then a.a.s. $G_{\ell}(m, d)$ is a trivial group.
- If $d<1 / 2$, then a.a.s. $G_{\ell}(m, d)$ is non-elementary hyperbolic and torsion-free. In addition, its presentation is aspherical.

More precisely (Ollivier 2007), a.a.s. the Cayley graph of $G_{\ell}(m, d)$ is δ-hyperbolic with

$$
\delta=\frac{4 \ell}{1-2 d} .
$$

The first result: phase transition at density $1 / 2$

Theorem (Gromov 1993)

- If $d>1 / 2$, then a.a.s. $G_{\ell}(m, d)$ is a trivial group.
- If $d<1 / 2$, then a.a.s. $G_{\ell}(m, d)$ is non-elementary hyperbolic and torsion-free. In addition, its presentation is aspherical.

More precisely (Ollivier 2007), a.a.s. the Cayley graph of $G_{\ell}(m, d)$ is δ-hyperbolic with

$$
\delta=\frac{4 \ell}{1-2 d} .
$$

Question (Gromov 2003)

Is there any other interesting phase transition?
For a sequence of group properties $\left(P_{\ell}\right)$, does there exist a critical density d_{c} such that

- If $d<d_{c}$, then a.a.s. $G_{\ell}(m, d)$ satisfies P_{ℓ};
- If $d>d_{c}$, then a.a.s. $G_{\ell}(m, d)$ does not satisfy P_{ℓ} ?

Table of Contents

1. Random groups and phase transitions

2. Main tool: The intersection formula
3. Free subgroups in random groups
4. Van Kampen diagrams in random groups
5. Open questions

Density of a subset

Definition (Density of a subset)
The density of a subset X of a finite set B is

$$
\left.\operatorname{dens}_{B} X=\log _{|B|}| | X \mid\right)
$$

Density of a subset

Definition (Density of a subset)
The density of a subset X of a finite set B is

$$
\operatorname{dens}_{B} X=\log _{|B|}(|X|)
$$

If B is a finite dimensional vector space over a finite field and X is a affine subspace, then

$$
\operatorname{dens}_{B} X=\frac{\operatorname{dim} X}{\operatorname{dim} B} .
$$

If R, R^{\prime} are affine subspaces in general position, then

$$
\operatorname{dim}\left(R \cap R^{\prime}\right)=\operatorname{dim} R+\operatorname{dim} R^{\prime}-\operatorname{dim} B,
$$

Density of a subset

Definition (Density of a subset)

The density of a subset X of a finite set B is

$$
\operatorname{dens}_{B} X=\log _{|B|}(|X|)
$$

If B is a finite dimensional vector space over a finite field and X is a affine subspace, then

$$
\operatorname{dens}_{B} X=\frac{\operatorname{dim} X}{\operatorname{dim} B} .
$$

If R, R^{\prime} are affine subspaces in general position, then

$$
\operatorname{dim}\left(R \cap R^{\prime}\right)=\operatorname{dim} R+\operatorname{dim} R^{\prime}-\operatorname{dim} B,
$$

so

$$
\operatorname{dens}\left(R \cap R^{\prime}\right)=\operatorname{dens} R+\operatorname{dens} R^{\prime}-1
$$

The intersection formula

Metatheorem (The intersection formula, Gromov 1993)

Independent "random subsets" R and R^{\prime} in a finite set B satisfy

$$
\operatorname{dens}\left(R \cap R^{\prime}\right)=\operatorname{dens} R+\operatorname{dens} R^{\prime}-1,
$$

with the convention

$$
\operatorname{dens}(R \cap R)<0 \Longleftrightarrow R \cap R^{\prime}=\emptyset
$$

The intersection formula

Metatheorem (The intersection formula, Gromov 1993)

Independent "random subsets" R and R^{\prime} in a finite set B satisfy

$$
\operatorname{dens}\left(R \cap R^{\prime}\right)=\operatorname{dens} R+\operatorname{dens} R^{\prime}-1
$$

with the convention

$$
\operatorname{dens}(R \cap R)<0 \Longleftrightarrow R \cap R^{\prime}=\emptyset
$$

This equality is not always true...
Let R, R^{\prime} be uniform distributions of cardinality $|B|^{d},|B|^{d^{\prime}}$, then $\operatorname{Pr}\left(R \cap R^{\prime}=\varnothing\right)>0$.

The intersection formula

Metatheorem (The intersection formula, Gromov 1993)

Independent "random subsets" R and R^{\prime} in a finite set B satisfy

$$
\operatorname{dens}\left(R \cap R^{\prime}\right)=\operatorname{dens} R+\operatorname{dens} R^{\prime}-1
$$

with the convention

$$
\operatorname{dens}(R \cap R)<0 \Longleftrightarrow R \cap R^{\prime}=\emptyset
$$

This equality is not always true...
Let R, R^{\prime} be uniform distributions of cardinality $|B|^{d},|B|^{d^{\prime}}$, then $\operatorname{Pr}\left(R \cap R^{\prime}=\varnothing\right)>0$. We have

$$
\operatorname{Pr}\left(\left|\operatorname{dens}\left(R \cap R^{\prime}\right)-\left(d+d^{\prime}-1\right)\right| \leq \varepsilon\right) \xrightarrow[|B| \rightarrow \infty]{ } 1
$$

Sequences of random subsets

Let $\boldsymbol{B}=\left(B_{\ell}\right)$ be a sequence of finite sets with $\left|B_{\ell}\right| \rightarrow \infty$.
Let $\boldsymbol{R}=\left(R_{\ell}\right)$ be a sequence of random subsets of $\boldsymbol{B}=\left(B_{\ell}\right)$.

Sequences of random subsets

Let $\boldsymbol{B}=\left(B_{\ell}\right)$ be a sequence of finite sets with $\left|B_{\ell}\right| \rightarrow \infty$.
Let $\boldsymbol{R}=\left(R_{\ell}\right)$ be a sequence of random subsets of $\boldsymbol{B}=\left(B_{\ell}\right)$.

Definition (Densable sequences of random subsets)

We say that $\boldsymbol{R}=\left(R_{\ell}\right)$ is densable with density d if the sequence of random variables

$$
\operatorname{dens}_{B_{\ell}}\left(R_{\ell}\right)=\log _{\left|B_{\ell}\right|}\left(\left|R_{\ell}\right|\right)
$$

converges in probability to the constant $d \in\{-\infty\} \cup[0,1]$.
We denote

$$
\operatorname{dens}_{B} R=d .
$$

Examples of densable sequences

Each of the following sequences of random subsets $\boldsymbol{R}=\left(R_{\ell}\right)$ is densable of density d.

- (The uniform model) R_{ℓ} follows the uniform distribution in the set of subsets of B_{ℓ} of cardinality $\left\lfloor\left|B_{\ell}\right|^{d}\right\rfloor$.
- (The Bernoulli model) The events $\left\{r \in R_{\ell}\right\}$ through $r \in B_{\ell}$ are independent of the same probability $\left|B_{\ell}\right|^{d-1}$. (Note that $\mathbb{E}\left(\left|R_{\ell}\right|\right)=\left|B_{\ell}\right|^{d}$.)
- (The random map model) Let A_{ℓ} be a set with $\left|A_{\ell}\right|=\left\lfloor\left|B_{\ell}\right|^{d}\right\rfloor$. R_{ℓ} is the image of a random map from A_{ℓ} to B_{ℓ}, uniformly chosen among all possible maps.

Examples of densable sequences

Each of the following sequences of random subsets $\boldsymbol{R}=\left(R_{\ell}\right)$ is densable of density d.

- (The uniform model) R_{ℓ} follows the uniform distribution in the set of subsets of B_{ℓ} of cardinality $\left\lfloor\left|B_{\ell}\right|^{d}\right\rfloor$.
- (The Bernoulli model) The events $\left\{r \in R_{\ell}\right\}$ through $r \in B_{\ell}$ are independent of the same probability $\left|B_{\ell}\right|^{d-1}$. (Note that $\mathbb{E}\left(\left|R_{\ell}\right|\right)=\left|B_{\ell}\right|^{d}$.)
- (The random map model) Let A_{ℓ} be a set with $\left|A_{\ell}\right|=\left\lfloor\left|B_{\ell}\right|^{d}\right\rfloor$. R_{ℓ} is the image of a random map from A_{ℓ} to B_{ℓ}, uniformly chosen among all possible maps.
\boldsymbol{R} is called permutation invariant if R_{ℓ} is measure invariant under the permutations of B_{ℓ}.

Formal statement of the intersection formula

Theorem (The intersection formula)
Let $\boldsymbol{R}=\left(R_{\ell}\right), \boldsymbol{R}^{\prime}=\left(R_{\ell}^{\prime}\right)$ be independent densable sequences of permutation invariant random subsets of the sequence of sets $\boldsymbol{B}=\left(B_{\ell}\right)$.

If dens $\boldsymbol{R}+$ dens $\boldsymbol{R}^{\prime} \neq 1$, then the sequence $\boldsymbol{R} \cap \boldsymbol{R}^{\prime}$ is densable and permutation invariant.

Formal statement of the intersection formula

Theorem (The intersection formula)

Let $\boldsymbol{R}=\left(R_{\ell}\right), \boldsymbol{R}^{\prime}=\left(R_{\ell}^{\prime}\right)$ be independent densable sequences of permutation invariant random subsets of the sequence of sets $\boldsymbol{B}=\left(B_{\ell}\right)$.

If dens $\boldsymbol{R}+$ dens $\boldsymbol{R}^{\prime} \neq 1$, then the sequence $\boldsymbol{R} \cap \boldsymbol{R}^{\prime}$ is densable and permutation invariant. In addition,

- If dens $\boldsymbol{R}+\operatorname{dens} \boldsymbol{R}^{\prime}<1$, then a.a.s. $R_{\ell} \cap R_{\ell}^{\prime}=\emptyset$, i.e.

$$
\operatorname{dens}\left(\boldsymbol{R} \cap \boldsymbol{R}^{\prime}\right)=-\infty
$$

- If dens $\boldsymbol{R}+\operatorname{dens} \boldsymbol{R}^{\prime}>1$, then a.a.s. $R_{\ell} \cap R_{\ell}^{\prime} \neq \varnothing$ and

$$
\operatorname{dens}\left(\boldsymbol{R} \cap \boldsymbol{R}^{\prime}\right)=\operatorname{dens} \boldsymbol{R}+\operatorname{dens} \boldsymbol{R}^{\prime}-1
$$

The random-fixed intersection formula

Theorem (The random-fixed intersection formula)
Let $\boldsymbol{R}=\left(R_{\ell}\right)$ be a densable sequence of permutation invariant random subsets. Let $\boldsymbol{X}=\left(X_{\ell}\right)$ be a densable sequence of fixed subsets.

If dens $\boldsymbol{R}+$ dens $\boldsymbol{X} \neq 1$, then the sequence $\boldsymbol{R} \cap \boldsymbol{X}$ is densable.

The random-fixed intersection formula

Theorem (The random-fixed intersection formula)

Let $\boldsymbol{R}=\left(R_{\ell}\right)$ be a densable sequence of permutation invariant random subsets. Let $\boldsymbol{X}=\left(X_{\ell}\right)$ be a densable sequence of fixed subsets.

If dens $\boldsymbol{R}+$ dens $\boldsymbol{X} \neq 1$, then the sequence $\boldsymbol{R} \cap \boldsymbol{X}$ is densable. In addition,

- If dens $\boldsymbol{R}+\operatorname{dens} \boldsymbol{X}<1$, then a.a.s. $R_{\ell} \cap X_{\ell}=\emptyset$, i.e.

$$
\operatorname{dens}(\boldsymbol{R} \cap \boldsymbol{X})=-\infty
$$

- If dens $\boldsymbol{R}+\operatorname{dens} \boldsymbol{X}>1$, then a.a.s. $R_{\ell} \cap X_{\ell} \neq \varnothing$ and

$$
\operatorname{dens}(\boldsymbol{R} \cap \boldsymbol{X})=\operatorname{dens} \boldsymbol{R}+\operatorname{dens} \boldsymbol{X}-1
$$

Application to random groups

$B_{\ell}=$ the set of cyclically reduced relators of length at most $\ell,\left|B_{\ell}\right|=(2 m-1)^{d \ell+O(1)}$.
Definition (The permutation invariant density model of random groups)
Let $m \geq 2, d \in[0,1]$. A sequence of random groups $\left(G_{\ell}(m, d)\right)$ with m generators of density d is defined by

$$
G_{\ell}(m, d)=\left\langle x_{1}, \ldots, x_{m} \mid R_{\ell}\right\rangle
$$

where $\boldsymbol{R}=\left(R_{\ell}\right)$ is a densable sequence of permutation invariant random subsets of $\boldsymbol{B}=\left(B_{\ell}\right)$ of density d.

Application to random groups

$B_{\ell}=$ the set of cyclically reduced relators of length at most $\ell,\left|B_{\ell}\right|=(2 m-1)^{d \ell+O(1)}$.
Definition (The permutation invariant density model of random groups)
Let $m \geq 2, d \in[0,1]$. A sequence of random groups $\left(G_{\ell}(m, d)\right)$ with m generators of density d is defined by

$$
G_{\ell}(m, d)=\left\langle x_{1}, \ldots, x_{m} \mid R_{\ell}\right\rangle
$$

where $\boldsymbol{R}=\left(R_{\ell}\right)$ is a densable sequence of permutation invariant random subsets of $\boldsymbol{B}=\left(B_{\ell}\right)$ of density d.

Example: Let X_{ℓ} be the set of relators in B_{ℓ} of type $r=w^{2}$. We have $\left|X_{\ell}\right|=(2 m-1)^{d \ell / 2+O(1)}$, so dens $\boldsymbol{X}=1 / 2$.

- If $d+1 / 2<1$, then a.a.s. there is no relator of type w^{2} in R_{ℓ}.
- If $d+1 / 2>1$, then a.a.s. there exists relators of type w^{2} in R_{ℓ}.

Table of Contents

1. Random groups and phase transitions

2. Main tool: The intersection formula
3. Free subgroups in random groups
4. Van Kampen diagrams in random groups
5. Open questions

Magnus' Freiheitssatz

Theorem (The Freiheitssatz ("freedom theorem" in German), Magnus 1933)
Let G be a group defined by a presentation with a single cyclically reduced relator

$$
G=\left\langle x_{1}, \ldots, x_{m} \mid r\right\rangle .
$$

If x_{m} appears in r, then x_{1}, \ldots, x_{m-1} freely generate a free subgroup of G.

Magnus' Freiheitssatz

Theorem (The Freiheitssatz (" freedom theorem" in German), Magnus 1933)

Let G be a group defined by a presentation with a single cyclically reduced relator

$$
G=\left\langle x_{1}, \ldots, x_{m} \mid r\right\rangle .
$$

If x_{m} appears in r, then x_{1}, \ldots, x_{m-1} freely generate a free subgroup of G.

Given a group presentation with m generators

$$
G=\left\langle x_{1}, \ldots, x_{m} \mid R\right\rangle .
$$

If the first $(m-1)$ generators x_{1}, \ldots, x_{m-1} freely generate a free subgroup, then it is called a "Freiheitssatz presentation".

For few relator random groups

For few relator random groups (a particular case of density 0), there is a much stronger result:

Theorem (Arzhantseva-Ol'shanskii 1996)

Let $\left(G_{\ell}\right)$ be a sequence of random groups with m generators and k relators (k is fixed, independent of ℓ), defined by

$$
G_{\ell}=\left\langle x_{1}, \ldots, x_{m} \mid r_{1}, \ldots, r_{k}\right\rangle
$$

with $\left|r_{i}\right| \leq \ell$ randomly chosen (uniformly among all possible choices).
If $m \geq 2$ and $k \geq 1$, then a.a.s. every $(m-1)$-generated subgroup of G_{ℓ} is free.

In particular, a.a.s. the presentation of G_{ℓ} is a Freiheitssatz presentation.

For the density model of random groups

For the density model, copying the proof of Arzhantseva and Ol'shanskii:

Theorem

Let $\left(G_{\ell}(m, d)\right)$ be a sequence of random groups at density d, defined by

$$
G_{\ell}(m, d)=\left\langle x_{1}, \ldots, x_{m} \mid R_{\ell}\right\rangle .
$$

If $d<\frac{1}{120 m^{2} \ln (2 m)} \sim \frac{1}{m^{2} \ln m}$, then a.a.s. every $(m-1)$-generated subgroup of G_{ℓ} is free.

In particular, if $d<\frac{1}{120 m^{2} \ln (2 m)} \sim \frac{1}{m^{2} \ln m}$, then a.a.s. the presentation of $G_{\ell}(m, d)$ is a Freiheitssatz presentation.

Question

Is the density $d \sim \frac{1}{m^{2} \ln m}$ optimal for this property?
Is there a phase transition for this property?

Question

Is the density $d \sim \frac{1}{m^{2} \ln m}$ optimal for this property?
Is there a phase transition for this property?
More generally, $(m-1)$ can be replaced by any integer $1 \leq r \leq m-1$.

Question

Let $1 \leq r \leq m-1$. Does there exist a critical density $d(m, r)$ such that

- if $d<d(m, r)$ then a.a.s. every r-generated subgroup of $G_{\ell}(m, d)$ is free;
- if $d>d(m, r)$ then a.a.s. there exists a non-free r-generated subgroup in $G_{\ell}(m, d)$?

The phase transition at density d_{r}

Let $1 \leq r \leq m-1$. There is a phase transition at density

$$
d_{r}=\min \left\{\frac{1}{2}, 1-\log _{2 m-1}(2 r-1)\right\} .
$$

The phase transition at density d_{r}

Let $1 \leq r \leq m-1$. There is a phase transition at density

$$
d_{r}=\min \left\{\frac{1}{2}, 1-\log _{2 m-1}(2 r-1)\right\} .
$$

Theorem

Let $\left(G_{\ell}(m, d)\right)=\left(\left\langle x_{1}, \ldots, x_{m} \mid R_{\ell}\right\rangle\right)$ be a sequence of random groups with m generators at density d.

- If $d<d_{r}$, then a.a.s. every r-generated subgroup of $G_{\ell}(m, d)$ with "small" generators (i.e. $H=\left\langle y_{1}, \ldots, y_{r}\right\rangle$ with lengths $\left|y_{i}\right| \leq \frac{d_{r}-d}{30 r} \ell$) is free and quasi-convex.

In particular, a.a.s. the first r generators x_{1}, \ldots, x_{r} freely generate a free subgroup.

- If $d>d_{r}$, then a.a.s. the first r generators x_{1}, \ldots, x_{r} generate the whole group $G_{\ell}(m, d)$ (which is not free).

Proof for the case $d>d_{r}$

- If $d_{r}=1 / 2$, then a.a.s. $G_{\ell}(m, d)$ is trivial. Suppose that $d_{r}=1-\log _{2 m-1}(2 r-1)$.

Proof for the case $d>d_{r}$

- If $d_{r}=1 / 2$, then a.a.s. $G_{\ell}(m, d)$ is trivial. Suppose that $d_{r}=1-\log _{2 m-1}(2 r-1)$.
- Let $X_{\ell}=\left\{x_{r+1} w \mid w\right.$ is a word of $\left.x_{1}, \ldots, x_{r}\right\} \subset B_{\ell}$.

$$
\left|X_{\ell}\right|=(2 r-1)^{\ell+O(1)}, \text { so }
$$

$$
\operatorname{dens}_{\boldsymbol{B}} \boldsymbol{X}=\log _{2 m-1}(2 r-1)
$$

Proof for the case $d>d_{r}$

- If $d_{r}=1 / 2$, then a.a.s. $G_{\ell}(m, d)$ is trivial. Suppose that $d_{r}=1-\log _{2 m-1}(2 r-1)$.
- Let $X_{\ell}=\left\{x_{r+1} w \mid w\right.$ is a word of $\left.x_{1}, \ldots, x_{r}\right\} \subset B_{\ell}$.

$$
\left|X_{\ell}\right|=(2 r-1)^{\ell+O(1)}, \text { so } \quad \operatorname{dens}_{\boldsymbol{B}} \boldsymbol{X}=\log _{2 m-1}(2 r-1)
$$

- By the intersection formula, dens $\boldsymbol{R}+\operatorname{dens} \boldsymbol{X}>d_{r}+\log _{2 m-1}(2 r-1)=1$, so a.a.s. $R_{\ell} \cap X_{\ell}$ is not empty.

Proof for the case $d>d_{r}$

- If $d_{r}=1 / 2$, then a.a.s. $G_{\ell}(m, d)$ is trivial. Suppose that $d_{r}=1-\log _{2 m-1}(2 r-1)$.
- Let $X_{\ell}=\left\{x_{r+1} w \mid w\right.$ is a word of $\left.x_{1}, \ldots, x_{r}\right\} \subset B_{\ell}$.

$$
\left|X_{\ell}\right|=(2 r-1)^{\ell+O(1)}, \text { so } \quad \operatorname{dens}_{B} \boldsymbol{X}=\log _{2 m-1}(2 r-1)
$$

- By the intersection formula, dens $\boldsymbol{R}+$ dens $\boldsymbol{X}>d_{r}+\log _{2 m-1}(2 r-1)=1$, so a.a.s. $R_{\ell} \cap X_{\ell}$ is not empty.
- Hence, a.a.s. x_{r+1} can be written as a word w^{-1} of x_{1}, \ldots, x_{r} in $G_{\ell}(m, d)$.

Proof for the case $d>d_{r}$

- If $d_{r}=1 / 2$, then a.a.s. $G_{\ell}(m, d)$ is trivial. Suppose that $d_{r}=1-\log _{2 m-1}(2 r-1)$.
- Let $X_{\ell}=\left\{x_{r+1} w \mid w\right.$ is a word of $\left.x_{1}, \ldots, x_{r}\right\} \subset B_{\ell}$.

$$
\left|X_{\ell}\right|=(2 r-1)^{\ell+O(1)}, \text { so } \quad \operatorname{dens}_{B} \boldsymbol{X}=\log _{2 m-1}(2 r-1)
$$

- By the intersection formula, dens $\boldsymbol{R}+$ dens $\boldsymbol{X}>d_{r}+\log _{2 m-1}(2 r-1)=1$, so a.a.s. $R_{\ell} \cap X_{\ell}$ is not empty.
- Hence, a.a.s. x_{r+1} can be written as a word w^{-1} of x_{1}, \ldots, x_{r} in $G_{\ell}(m, d)$.
- Apply the same argument to the other generators x_{r+2}, \ldots, x_{m}.

The phase transition at density d_{r}

Let $r=r(m, d)$ be the maximal number such that a.a.s. x_{1}, \ldots, x_{r} freely generate a free subgroup of $G_{\ell}(m, d)$.

$r(m, d)$ with $m=10$ generators

Freiheitssatz for random groups

Corollary

If $d_{r}<d<d_{r-1}$, then a.a.s. the random group $G_{\ell}(m, d)=\left\langle x_{1}, \ldots, x_{m} \mid R_{\ell}\right\rangle$ has an aspherical presentation with r generators

$$
\left\langle x_{1}, \ldots, x_{r} \mid R_{\ell}^{\prime}\right\rangle
$$

such that the first $r-1$ generators x_{1}, \ldots, x_{r-1} freely generate a free subgroup.
That is to say, if d is not one of the d_{r}, then a.a.s. the random $\operatorname{group} G_{\ell}(m, d)$ has a Freiheitssatz presentation.

Remark: In this presentation, the relator lengths in R_{ℓ}^{\prime} vary from ℓ to ℓ^{2}.

Freiheitssatz for random groups

Corollary

If $d_{r}<d<d_{r-1}$, then a.a.s. the random group $G_{\ell}(m, d)=\left\langle x_{1}, \ldots, x_{m} \mid R_{\ell}\right\rangle$ has an aspherical presentation with r generators

$$
\left\langle x_{1}, \ldots, x_{r} \mid R_{\ell}^{\prime}\right\rangle
$$

such that the first $r-1$ generators x_{1}, \ldots, x_{r-1} freely generate a free subgroup.
That is to say, if d is not one of the d_{r}, then a.a.s. the random $\operatorname{group} G_{\ell}(m, d)$ has a Freiheitssatz presentation.

Remark: In this presentation, the relator lengths in R_{ℓ}^{\prime} vary from ℓ to ℓ^{2}.
"[..] What does a random group look like?

Freiheitssatz for random groups

Corollary

If $d_{r}<d<d_{r-1}$, then a.a.s. the random group $G_{\ell}(m, d)=\left\langle x_{1}, \ldots, x_{m} \mid R_{\ell}\right\rangle$ has an aspherical presentation with r generators

$$
\left\langle x_{1}, \ldots, x_{r} \mid R_{\ell}^{\prime}\right\rangle
$$

such that the first $r-1$ generators x_{1}, \ldots, x_{r-1} freely generate a free subgroup.
That is to say, if d is not one of the d_{r}, then a.a.s. the random $\operatorname{group} G_{\ell}(m, d)$ has a Freiheitssatz presentation.

Remark: In this presentation, the relator lengths in R_{ℓ}^{\prime} vary from ℓ to ℓ^{2}.
"[...] What does a random group look like?
[...] Nothing like we have ever seen before."
_- M. Gromov, "Spaces and Questions" 2000.

Freiheitssatz for Random groups

In particular, if $d<d_{m-1} \sim \frac{1}{m \ln m}$, then a.a.s. the presentation defining $G_{\ell}(m, d)$ is a Freiheitssatz presentation.

Freiheitssatz for Random groups

In particular, if $d<d_{m-1} \sim \frac{1}{m \ln m}$, then a.a.s. the presentation defining $G_{\ell}(m, d)$ is a Freiheitssatz presentation.

This bound is much larger than the previous bound (by the few relator model method) $\sim \frac{1}{m^{2} \ln m}$.

Freiheitssatz for Random groups

In particular, if $d<d_{m-1} \sim \frac{1}{m \ln m}$, then a.a.s. the presentation defining $G_{\ell}(m, d)$ is a Freiheitssatz presentation.

This bound is much larger than the previous bound (by the few relator model method) $\sim \frac{1}{m^{2} \ln m}$.

Question

Is it true that, if $d<d_{r}$, then a.a.s. every r-generated subgroup of $G_{\ell}(m, d)$ is free?

The question is still open. If it is true, then at density $d_{r}<d<d_{r-1}$, a.a.s.

- every $(r-1)$-generated subgroup of $G_{\ell}(m, d)$ is free
- and $G_{\ell}(m, d)$ is r-generated by not free,
so a.a.s. the rank of $G_{\ell}(m, d)$ is r.

Table of Contents

1. Random groups and phase transitions

2. Main tool: The intersection formula
3. Free subgroups in random groups
4. Van Kampen diagrams in random groups

Open questions

Van Kampen diagrams

Definition

A van Kampen diagram with respect to a group presentation $G=\langle X \mid R\rangle$ is a finite, planar (embedded in \mathbb{R}^{2}) and simply connected 2-complex D such that:

- Every face has a preferred boundary loop (a starting point and an orientation).
- Every edge is labeled by a generator $x \in X^{ \pm}$.
- Every face is labeled by a relator $r \in R$ such that the word read on the preferred boundary loop is r.

Van Kampen diagrams

Definition

A van Kampen diagram with respect to a group presentation $G=\langle X \mid R\rangle$ is a finite, planar (embedded in \mathbb{R}^{2}) and simply connected 2-complex D such that:

- Every face has a preferred boundary loop (a starting point and an orientation).
- Every edge is labeled by a generator $x \in X^{ \pm}$.
- Every face is labeled by a relator $r \in R$ such that the word read on the preferred boundary loop is r.

Van Kampen diagrams

Definition

A van Kampen diagram with respect to a group presentation $G=\langle X \mid R\rangle$ is a finite, planar (embedded in \mathbb{R}^{2}) and simply connected 2-complex D such that:

- Every face has a preferred boundary loop (a starting point and an orientation).
- Every edge is labeled by a generator $x \in X^{ \pm}$.
- Every face is labeled by a relator $r \in R$ such that the word read on the preferred boundary loop is r.

Reduced van Kampen diagrams

A pair of faces in a van Kampen diagram reducible if they have the same label and there is a common edge on their boundaries at the same position.

A van Kampen diagram is called reduced if there is no reducible pair of faces.

Reduced van Kampen diagrams

A pair of faces in a van Kampen diagram reducible if they have the same label and there is a common edge on their boundaries at the same position.

A van Kampen diagram is called reduced if there is no reducible pair of faces.
In the following, a 2-complex is finite, planar and simply connected.

Isoperimetric inequality

For a van Kampen diagram D, $|D|=$ the number of faces, $|\partial D|=$ the boundary length.

Proposition (Gromov 1993, Ollivier 2004)

Let $\left(G_{\ell}(m, d)\right)$ be a sequence of random groups at density d. Let $K>0$ be an integer.
If $d<1 / 2$, then for any $s>0$ a.a.s. every reduced van Kampen diagram D of $G_{\ell}(m, d)$ with $|D| \leq K$ satisfies the isoperimetric inequality

$$
|\partial D| \geq(1-2 d-s)|D| \ell
$$

The main question

Is the converse true?

Question

If a 2-complex D with $|D| \leq K$ (and $|\partial f| \leq \ell$ for any face f of D) satisfies the inequality

$$
|\partial D| \geq(1-2 d+s)|D| \ell
$$

does there exist (a.a.s.) a reduced van Kampen diagram of $G_{\ell}(m, d)$ whose underlying 2-complex is D ?

The main question

Is the converse true?

Question

If a 2-complex D with $|D| \leq K$ (and $|\partial f| \leq \ell$ for any face f of D) satisfies the inequality

$$
|\partial D| \geq(1-2 d+s)|D| \ell
$$

does there exist (a.a.s.) a reduced van Kampen diagram of $G_{\ell}(m, d)$ whose underlying 2-complex is D ?

It is not true in general.

Counterexample

Let $\left(G_{\ell}(m, d)\right)$ be a sequence of random groups at density $d=0.4$. Let D be the following 2-complex.

$$
0.8 \ell>(1-2 \times 0.4) \times 3 \ell=0.6 \ell
$$

Counterexample

Let $\left(G_{\ell}(m, d)\right)$ be a sequence of random groups at density $d=0.4$.
Let D be the following 2-complex.

$$
0.8 \ell>(1-2 \times 0.4) \times 3 \ell=0.6 \ell
$$

$$
0.2 \ell<(1-2 \times 0.4) \times 2 \ell=0.4 \ell
$$

Counterexample

Let $\left(G_{\ell}(m, d)\right)$ be a sequence of random groups at density $d=0.4$.
Let D be the following 2-complex.

$$
0.8 \ell>(1-2 \times 0.4) \times 3 \ell=0.6 \ell
$$

$$
0.2 \ell<(1-2 \times 0.4) \times 2 \ell=0.4 \ell
$$

D^{\prime} is not a v.K. diagram of $G_{\ell}(m, d)$, so D neither.

Geometrical form of 2-complexes

Consider a sequence of 2-complexes $\boldsymbol{D}=\left(D_{\ell}\right)$ of the same "geometrical form".

Geometrical form of 2-complexes

Consider a sequence of 2-complexes $\boldsymbol{D}=\left(D_{\ell}\right)$ of the same "geometrical form". i.e.

- They have the same topological form.
- For any face f of $D_{\ell},|\partial f| \leq \ell$.
- The corresponding maximal arc lengths are $\lambda_{1} \ell, \ldots, \lambda_{k} \ell$.
(A maximal arc $=$ a simple path passing by vertices of valency 2 , with endpoints of valency $\neq 2$.)

Geometrical form of 2-complexes

Consider a sequence of 2-complexes $\boldsymbol{D}=\left(D_{\ell}\right)$ of the same "geometrical form".
i.e.

- They have the same topological form.
- For any face f of $D_{\ell},|\partial f| \leq \ell$.
- The corresponding maximal arc lengths are $\lambda_{1} \ell, \ldots, \lambda_{k} \ell$.
(A maximal arc $=$ a simple path passing by vertices of
 valency 2 , with endpoints of valency $\neq 2$.)

Definition (Density of a sequence of diagrams)

The density of \boldsymbol{D} is

$$
\operatorname{dens} \boldsymbol{D}=\frac{\sum_{i=1}^{k} \lambda_{i}}{|\boldsymbol{D}|} \quad\left(=\lim _{\ell \rightarrow \infty} \frac{\operatorname{Edge}\left(D_{\ell}\right)}{\left|D_{\ell}\right| \ell}\right)
$$

Critical density

According to the counterexample, every sub-2-complex should be considered.

Definition

The critical density of \boldsymbol{D} is

$$
\operatorname{dens}_{c}(\boldsymbol{D})=\min _{\boldsymbol{D}^{\prime} \leq \boldsymbol{D}} \operatorname{dens}\left(\boldsymbol{D}^{\prime}\right)
$$

Note that $\operatorname{dens}_{c} \boldsymbol{D} \leq \operatorname{dens} \boldsymbol{D}$.

Phase transition for the existence of diagrams

Theorem

Let $\left(G_{\ell}(m, d)\right)$ be a sequence of random groups at density d. Let $K>0$.
Let $\boldsymbol{D}=\left(D_{\ell}\right)$ be a sequence of 2-complexes of the same geometrical form, with K faces.

- If $d>1-\operatorname{dens}_{c}(\boldsymbol{D})$, then a.a.s. there exists a reduced van Kampen diagram of $G_{\ell}(m, d)$ whose underlying 2-complex is D_{ℓ}.
- If $d<1-\operatorname{dens}_{c}(\boldsymbol{D})$, then a.a.s. there is no reduced van Kampen diagram of $G_{\ell}(m, d)$ whose underlying 2-complex is D_{ℓ}.

Phase transition for existence of van Kampen diagrams

Corollary (of the first point)

Let D be a 2-complex with K faces and $|\partial f|=\ell$ for every face f of D_{ℓ}. For any $s>0$, if every sub-2-complex D^{\prime} of D satisfies the isoperimetric inequality

$$
\left|\partial D^{\prime}\right| \geq(1-2 d+s)\left|D^{\prime}\right| \ell
$$

then a.a.s. in $G_{\ell}(m, d)$, there exists a reduced van Kampen diagram of whose underlying 2-complex is D.

Applications: Phase transition for $C^{\prime}(\lambda)$ condition

The random group $G_{\ell}(m, d)$ does not satisfy $C^{\prime}(\lambda)$ if there exists a reduced van Kampen of the following form D_{ℓ}.

$$
\operatorname{dens}_{c} \boldsymbol{D}=1-\lambda / 2
$$

Applications: Phase transition for $C^{\prime}(\lambda)$ condition

The random group $G_{\ell}(m, d)$ does not satisfy $C^{\prime}(\lambda)$ if there exists a reduced van Kampen of the following form D_{ℓ}.

Application (Gromov 1993, Bassino-Nicaud-Weil 2020)

Let $0<\lambda<1$. There is a phase transition at density $d=\lambda / 2$:
(i) If $d<\lambda / 2$, then a.a.s. $G_{\ell}(m, d)$ satisfies $C^{\prime}(\lambda)$.
(ii) If $d>\lambda / 2$, then a.a.s. $G_{\ell}(m, d)$ does not satisfy $C^{\prime}(\lambda)$.

Applications: Phase transition for $C(p)$ condition

Application

Let $p \geq 2$ be an integer. There is a phase transition at density $d=\frac{1}{p+1}$:
(i) If $d<\frac{1}{p+1}$, then a.a.s. $G_{\ell}(m, d)$ satisfies $C(p)$.
(ii) If $d>\frac{1}{p+1}$, then a.a.s. $G_{\ell}(m, d)$ does not satisfy $C(p)$.

For non-planar 2-complexes

The phase transition for existence of diagrams holds for non-planar 2-complexes, with some more conditions...

For non-planar 2-complexes

The phase transition for existence of diagrams holds for non-planar 2-complexes, with some more conditions...

The condition $|D| \leq K$ is not enough and should be replaced by:

Definition (Complexity)

A 2-complex D is of complexity K if:

- $|D| \leq K$.
- The number of maximal arcs of D is bounded by K.
- For any face f of D, the boundary path ∂f is divided into at most K maximal arcs.

Remark: If D is planar and simply connected with $|D| \leq K$, then it is with complexity $6 K$.

Phase transition for existence of van Kampen 2-complexes

Theorem

Let $\left(G_{\ell}(m, d)\right)$ be a sequence of random groups at density d. Let $K>0$.
Let $\boldsymbol{D}=\left(D_{\ell}\right)$ be a sequence of 2-complexes of the same geometrical form, of complexity K.

- If $d>1-\operatorname{dens}_{c}(\boldsymbol{D})$, then a.a.s. there exists a reduced van Kampen 2-complex of $G_{\ell}(m, d)$ whose underlying 2-complex is D_{ℓ}.
- If $d<1-\operatorname{dens}_{c}(\boldsymbol{D})$, then a.a.s. there is no reduced van Kampen 2-complex of $G_{\ell}(m, d)$ whose underlying 2-complex is D_{ℓ}.

For non-planar 2-complexes

Let $\boldsymbol{D}=\left(D_{\ell}\right)$ be a sequence of (non-planar) 2-complexes of the same geometrical form, with complexity K.
If D_{ℓ} does not collapse to a graph, then there exists a sub 2-complex such that every edge is adjacent to at least 2 faces. So dens $\boldsymbol{D} \leq \frac{1}{2}<1-d$.

For non-planar 2-complexes

Let $\boldsymbol{D}=\left(D_{\ell}\right)$ be a sequence of (non-planar) 2-complexes of the same geometrical form, with complexity K.
If D_{ℓ} does not collapse to a graph, then there exists a sub 2-complex such that every edge is adjacent to at least 2 faces. So dens $\boldsymbol{D} \leq \frac{1}{2}<1-d$.

Proposition

If D_{ℓ} is the underlying 2-complex of a reduced van Kampen 2-complex of $G_{\ell}(m, d)$ with $d<1 / 2$, then D_{ℓ} collapses to a graph.

Table of Contents

1. Random groups and phase transitions

2. Main tool: The intersection formula
3. Free subgroups in random groups
4. Van Kampen diagrams in random groups
5. Open questions

Existence of surfaces with a fixed genus

Let $\boldsymbol{S}=\left(S_{\ell}\right)$ be a sequence of 2-complexes of the same geometrical form. If S_{ℓ} is a surface of genus g with $\left|S_{\ell}\right| \leq K$, then it is with complexity $10 g K$, and we have

$$
\operatorname{dens}_{c} \boldsymbol{S} \leq \frac{1}{2}
$$

Proposition

Let $\left(G_{\ell}(m, d)\right)$ be a sequence of random groups at density d. Let $g \geq 0, K \geq 1$.
Let $g \geq 0$. If $d<1 / 2$, then a.a.s. $G_{\ell}(m, d)$ does not contain any surface S_{ℓ} of genus g with $\left|S_{\ell}\right| \leq K$.

Existence of surfaces with a fixed genus

Can we remove the condition $\left|S_{\ell}\right| \leq K$?

Question

Given $g \geq 0$. Is it true that, if $d<1 / 2$, then a.a.s. $G_{\ell}(m, d)$ does not contain any surface subgroup of genus g ?

Existence of surfaces with a fixed genus

Can we remove the condition $\left|S_{\ell}\right| \leq K$?

Question

Given $g \geq 0$. Is it true that, if $d<1 / 2$, then a.a.s. $G_{\ell}(m, d)$ does not contain any surface subgroup of genus g ?

It is true for $g=0$, because a.a.s. the presentation of $G_{\ell}(m, d)$ is aspherical. It is true for $g=1$, because a.a.s. the $G_{\ell}(m, d)$ is hyperbolic (contain no \mathbb{Z}^{2}).

Existence of surfaces with a fixed genus

Can we remove the condition $\left|S_{\ell}\right| \leq K$?

Question

Given $g \geq 0$. Is it true that, if $d<1 / 2$, then a.a.s. $G_{\ell}(m, d)$ does not contain any surface subgroup of genus g ?

It is true for $g=0$, because a.a.s. the presentation of $G_{\ell}(m, d)$ is aspherical.
It is true for $g=1$, because a.a.s. the $G_{\ell}(m, d)$ is hyperbolic (contain no \mathbb{Z}^{2}).
The genus g should be given in advance (i.e. should not depend on ℓ).

Theorem (Calegari-Walker 2015)

If $d<1 / 2$, then a.a.s. $G_{\ell}(m, d)$ contains surface subgroups of genus $g=O(\ell)$.

The graph model of random groups

Let F_{m} be a free group with a generating set $X_{m}=\left\{x_{1}, \ldots, x_{m}\right\}$.
Let Γ be a graph labeled by $X_{m}^{ \pm}$, then

$$
F_{m} / \Gamma:=F_{m} /\langle\langle\text { words of loops of } \Gamma\rangle\rangle
$$

defines a group.
If Γ is a randomly labeled graph, then F_{m} / Γ is a random group.

The graph model of random groups

Ramanujan graph:

Let $p, q \geq 3$ be prime numbers congruent to 1 modulo $4, p<q$, with the Legendre symbol $\left(\frac{p}{q}\right)=-1$.
$C(p, q)=$ the Cayley graph of $P G L_{2}\left(\mathbb{F}_{q}\right)$ with a certain set of $(p+1) / 2$ generators. $C(p, q, j)=$ divide every edge of $C(p, q)$ into j edges.
$\Gamma(p, q, j)=$ randomly (non-reduced) label of $C(p, q, j)$ by $X_{m}^{ \pm}$.

$$
G_{q}(m, p, j)=F_{m} / \Gamma(p, q, j)
$$

The graph model of random groups

Ramanujan graph:

Let $p, q \geq 3$ be prime numbers congruent to 1 modulo $4, p<q$, with the Legendre symbol $\left(\frac{p}{q}\right)=-1$.
$C(p, q)=$ the Cayley graph of $P G L_{2}\left(\mathbb{F}_{q}\right)$ with a certain set of $(p+1) / 2$ generators. $C(p, q, j)=$ divide every edge of $C(p, q)$ into j edges.
$\Gamma(p, q, j)=$ randomly (non-reduced) label of $C(p, q, j)$ by $X_{m}^{ \pm}$.

$$
G_{q}(m, p, j)=F_{m} / \Gamma(p, q, j)
$$

We are interested in the asymptotic behaviors of the sequence of random groups

$$
\left(G_{q}(m, p, j)\right)_{q \text { prime }, q \neq p}
$$

The graph model of random groups

Theorem (Gromov 2003)

For any $m \geq 2$ and any $p \geq 3$, there exists j_{0} large enough such that, for any $j \geq j_{0}$, a.a.s. (when $q \rightarrow \infty$) the random group $G_{q}(m, p, j)$ is non-elementary hyperbolic.

The graph model of random groups

Theorem (Gromov 2003)

For any $m \geq 2$ and any $p \geq 3$, there exists j_{0} large enough such that, for any $j \geq j_{0}$, a.a.s. (when $q \rightarrow \infty$) the random group $G_{q}(m, p, j)$ is non-elementary hyperbolic.

Question

Is there a phase transition for this property?
More precisely, does there exist a function $c=c(m, p, j)$ such that
(i) if $c>1$, then a.a.s. $G_{q}(m, p, j)$ is trivial,
(ii) if $c<1$, then a.a.s. $G_{q}(m, p, j)$ is non-elementary hyperbolic?

A guess on $c=c(m, p, j)$

Let ρ_{q} be the girth (smallest simple cycle length) of $\Gamma(p, q, j)$.
Let R_{q} be the set of words read on simple cycles of $\Gamma(p, q, j)$ of length ρ_{q}, then dens $\boldsymbol{R}=\left(R_{q}\right)$ is the density of relators.

A guess on $c=c(m, p, j)$

Let ρ_{q} be the girth (smallest simple cycle length) of $\Gamma(p, q, j)$.
Let R_{q} be the set of words read on simple cycles of $\Gamma(p, q, j)$ of length ρ_{q}, then dens $\boldsymbol{R}=\left(R_{q}\right)$ is the density of relators.

Let X_{q} be the (fixed) set of non-reduced words of length ρ_{q} that are trivial in F_{m}.

Question

Does the intersection formula hold between \boldsymbol{R} and \boldsymbol{X} (in $\boldsymbol{B}=\left(B_{q}\right)$)? If it does, is it true that the phase transition happens at

$$
\begin{aligned}
& c(m, p, j)=\operatorname{dens} \boldsymbol{R} \quad+\operatorname{dens} \boldsymbol{X} \\
&=\frac{7}{4 j} \log _{2 m}(p)+\log _{2 m}(2 \sqrt{2 m-1})=1 ? \\
&(?) \quad(\text { known })
\end{aligned}
$$

Parallel geodesics and injectivity radius

Definition

Two bi-infinite geodesics in a hyperbolic space are called parallel if they have the same pair of limit points at the boundary and they have no intersection.
A set of $k \geq 2$ bi-infinite geodesics are called parallel if they are pairwise parallel.

Parallel geodesics and injectivity radius

Definition

Two bi-infinite geodesics in a hyperbolic space are called parallel if they have the same pair of limit points at the boundary and they have no intersection.
A set of $k \geq 2$ bi-infinite geodesics are called parallel if they are pairwise parallel.

Proposition (Gruber-Mackay 2018)

If $d<\frac{11-\sqrt{41}}{12}$, then a.a.s. there exists an integer $k=k(d)$ such that the number of parallel geodesics in a random triangular group at density d is bounded by k. In particular, a.a.s. the injectivity radius (smallest stable length) is at least $1 / k$.

Parallel geodesics and injectivity radius

In the Gromov density model:

Proposition

If $d<1 / 4$, then a.a.s. the number of parallel geodesics in a random group at density d is bounded by

$$
k=2+\frac{2 d}{1-4 d} .
$$

In particular, a.a.s. the injectivity radius is at least $1 / k$.

Parallel geodesics and injectivity radius

In the Gromov density model:

Proposition

If $d<1 / 4$, then a.a.s. the number of parallel geodesics in a random group at density d is bounded by

$$
k=2+\frac{2 d}{1-4 d} .
$$

In particular, a.a.s. the injectivity radius is at least $1 / k$.

Is there a phase transition?

Question

If $d>\frac{1}{4}$, is it true the number of parallel geodesics is not uniformly bounded (when $\ell \rightarrow \infty$) ? (i.e. for any $k \geq 0$ a.a.s. the number of parallel geodesics is larger than k.)

