Phase transitions in random groups: free subgroups and van Kampen 2-complexes

Tsung-Hsuan Tsai

Institut de Recherche Mathématique Avancée Université de Strasbourg

12 Juillet 2022

- 1. Random groups and phase transitions
- 2. Main tool: The intersection formula
- 3. Free subgroups in random groups
- 4. Van Kampen diagrams in random groups
- 5. Open questions

1. Random groups and phase transitions

2. Main tool: The intersection formula

- 3. Free subgroups in random groups
- 4. Van Kampen diagrams in random groups
- 5. Open questions

What is a random group?

Definition

A random group G is a random variable with values in a given (finite) set of groups.

For a group property P, we are interested in

 $\mathbf{Pr}(G \text{ satisfies } P).$

What is a random group?

Definition

A random group G is a random variable with values in a given (finite) set of groups.

For a group property P, we are interested in

 $\mathbf{Pr}(G \text{ satisfies } P).$

A random group is often constructed by a presentation with fixed generators and random relators:

$$G = \langle x_1, \dots, x_m \mid r_1 \dots, r_k \rangle.$$
fixed random

Relators considered are cyclically reduced.

Asymptotic behaviors

We are interested in the "asymptotic behaviors" when the maximal relator length $\ell = \max\{|r_1|, \ldots, |r_k|\}$ goes to infinity.

Asymptotic behaviors

We are interested in the "asymptotic behaviors" when the maximal relator length $\ell = \max\{|r_1|, \ldots, |r_k|\}$ goes to infinity.

Definition

Let $(G_\ell)_{\ell \geq 1}$ be a sequence of random groups defined by

$$G_{\ell} = \langle x_1, \ldots, x_m | \mathbf{R}_{\ell} \rangle$$

where R_{ℓ} is a random set of cyclically reduced relators of lengths at most ℓ .

Let $(P_{\ell})_{\ell \geq 1}$ be a sequence of group properties. We say that G_{ℓ} satisfies P_{ℓ} asymptotically almost surely (a.a.s.) if

 $\mathbf{Pr}(G_{\ell} \text{ satisfies } P_{\ell}) \xrightarrow[\ell \to \infty]{} 1.$

Definition (Gromov 1993)

Let $m \ge 2$, $d \in [0,1]$. A sequence of random groups $(G_{\ell}(m,d))$ with m generators **at density** d is defined by

$$G_{\ell}(m,d) = \langle x_1,\ldots,x_m | R_{\ell} \rangle$$

where R_{ℓ} is a random set of cyclically reduced relators of lengths at most ℓ , with

$$|R_{\ell}| = \lfloor (2m-1)^{d\ell} \rfloor$$

uniformly chosen among all possible choices.

Definition (Gromov 1993)

Let $m \ge 2$, $d \in [0,1]$. A sequence of random groups $(G_{\ell}(m,d))$ with m generators **at density** d is defined by

$$G_{\ell}(m,d) = \langle x_1,\ldots,x_m | R_{\ell} \rangle$$

where R_{ℓ} is a random set of cyclically reduced relators of lengths at most ℓ , with

$$|R_{\ell}| = \lfloor (2m-1)^{d\ell} \rfloor,$$

uniformly chosen among all possible choices.

Denote B_{ℓ} as the set of cyclically reduced words of length *at most* ℓ , we have $|B_{\ell}| = (2m - 1)^{\ell + O(1)}$, so $|R_{\ell}| = |B_{\ell}|^{d + o(1)}$.

The first result: phase transition at density 1/2

Theorem (Gromov 1993)

- If d > 1/2, then a.a.s. $G_{\ell}(m, d)$ is a trivial group.
- If d < 1/2, then a.a.s. G_l(m, d) is non-elementary hyperbolic and torsion-free. In addition, its presentation is aspherical.

More precisely (Ollivier 2007), a.a.s. the Cayley graph of $G_{\ell}(m, d)$ is δ -hyperbolic with

$$\delta = \frac{4\ell}{1-2d}.$$

The first result: phase transition at density 1/2

Theorem (Gromov 1993)

- If d > 1/2, then a.a.s. $G_{\ell}(m, d)$ is a trivial group.
- If d < 1/2, then a.a.s. G_l(m, d) is non-elementary hyperbolic and torsion-free. In addition, its presentation is aspherical.

More precisely (Ollivier 2007), a.a.s. the Cayley graph of $G_{\ell}(m, d)$ is δ -hyperbolic with

$$\delta = \frac{4\ell}{1-2d}$$

Question (Gromov 2003)

Is there any other interesting phase transition?

For a sequence of group properties (P_{ℓ}) , does there exist a critical density d_c such that

- If $d < d_c$, then a.a.s. $G_{\ell}(m, d)$ satisfies P_{ℓ} ;
- If $d > d_c$, then a.a.s. $G_{\ell}(m, d)$ does not satisfy P_{ℓ} ?

- 1. Random groups and phase transitions
- 2. Main tool: The intersection formula
- 3. Free subgroups in random groups
- 4. Van Kampen diagrams in random groups
- 5. Open questions

Density of a subset

Definition (Density of a subset)

The density of a subset X of a finite set B is

 $\operatorname{dens}_B X = \log_{|B|}(|X|).$

Density of a subset

Definition (Density of a subset)

The density of a subset X of a finite set B is

$$\operatorname{dens}_B X = \log_{|B|}(|X|).$$

If B is a finite dimensional vector space over a finite field and X is a affine subspace, then

$$\operatorname{dens}_B X = \frac{\dim X}{\dim B}.$$

If R, R' are affine subspaces in general position, then

$$\dim(R \cap R') = \dim R + \dim R' - \dim B,$$

Density of a subset

Definition (Density of a subset)

The density of a subset X of a finite set B is

$$\operatorname{dens}_B X = \log_{|B|}(|X|).$$

If B is a finite dimensional vector space over a finite field and X is a affine subspace, then

$$\operatorname{dens}_B X = \frac{\dim X}{\dim B}.$$

If R, R' are affine subspaces in general position, then

$$\dim(R \cap R') = \dim R + \dim R' - \dim B,$$

SO

$$dens(R \cap R') = dens R + dens R' - 1.$$

Metatheorem (The intersection formula, Gromov 1993)

Independent "random subsets" R and R' in a finite set B satisfy

$$\operatorname{dens}(R \cap R') = \operatorname{dens} R + \operatorname{dens} R' - 1,$$

with the convention

$$\operatorname{dens}(R \cap R) < 0 \iff R \cap R' = \emptyset.$$

Metatheorem (The intersection formula, Gromov 1993)

Independent "random subsets" R and R' in a finite set B satisfy

$$\operatorname{dens}(R \cap R') = \operatorname{dens} R + \operatorname{dens} R' - 1,$$

with the convention

$$\operatorname{dens}(R \cap R) < 0 \iff R \cap R' = \emptyset.$$

This equality is not always true...

Let R, R' be uniform distributions of cardinality $|B|^d$, $|B|^{d'}$, then $\Pr(R \cap R' = \emptyset) > 0$.

Metatheorem (The intersection formula, Gromov 1993)

Independent "random subsets" R and R' in a finite set B satisfy

$$\operatorname{dens}(R \cap R') = \operatorname{dens} R + \operatorname{dens} R' - 1,$$

with the convention

$$\operatorname{dens}(R \cap R) < 0 \iff R \cap R' = \emptyset.$$

This equality is not always true...

Let *R*, *R'* be uniform distributions of cardinality $|B|^d$, $|B|^{d'}$, then $\Pr(R \cap R' = \emptyset) > 0$. We have

$$Pr\Big(\big| \operatorname{dens}(R \cap R') - (d + d' - 1) \big| \le \varepsilon \Big) \xrightarrow[|B| \to \infty]{} 1$$

Let $\boldsymbol{B} = (B_{\ell})$ be a sequence of finite sets with $|B_{\ell}| \to \infty$. Let $\boldsymbol{R} = (R_{\ell})$ be a sequence of random subsets of $\boldsymbol{B} = (B_{\ell})$. Let $\boldsymbol{B} = (B_{\ell})$ be a sequence of finite sets with $|B_{\ell}| \to \infty$. Let $\boldsymbol{R} = (R_{\ell})$ be a sequence of random subsets of $\boldsymbol{B} = (B_{\ell})$.

Definition (Densable sequences of random subsets)

We say that $\mathbf{R} = (R_{\ell})$ is densable with density d if the sequence of random variables

$$\mathsf{dens}_{B_\ell}(R_\ell) = \mathsf{log}_{|B_\ell|}(|R_\ell|)$$

converges in probability to the constant $d \in \{-\infty\} \cup [0,1]$. We denote

dens_{*B*}
$$\boldsymbol{R} = d$$
.

Each of the following sequences of random subsets $\mathbf{R} = (R_{\ell})$ is *densable* of density *d*.

- (The uniform model) R_{ℓ} follows the uniform distribution in the set of subsets of B_{ℓ} of cardinality $\lfloor |B_{\ell}|^d \rfloor$.
- (The Bernoulli model) The events {r ∈ R_ℓ} through r ∈ B_ℓ are independent of the same probability |B_ℓ|^{d-1}. (Note that E(|R_ℓ|) = |B_ℓ|^d.)
- (The random map model) Let A_ℓ be a set with |A_ℓ| = [|B_ℓ|^d]. R_ℓ is the image of a random map from A_ℓ to B_ℓ, uniformly chosen among all possible maps.

Each of the following sequences of random subsets $\mathbf{R} = (R_{\ell})$ is *densable* of density *d*.

- (The uniform model) R_{ℓ} follows the uniform distribution in the set of subsets of B_{ℓ} of cardinality $\lfloor |B_{\ell}|^d \rfloor$.
- (The Bernoulli model) The events {r ∈ R_ℓ} through r ∈ B_ℓ are independent of the same probability |B_ℓ|^{d-1}. (Note that E(|R_ℓ|) = |B_ℓ|^d.)
- (The random map model) Let A_ℓ be a set with |A_ℓ| = [|B_ℓ|^d]. R_ℓ is the image of a random map from A_ℓ to B_ℓ, uniformly chosen among all possible maps.

R is called **permutation invariant** if R_{ℓ} is measure invariant under the permutations of B_{ℓ} .

Formal statement of the intersection formula

Theorem (The intersection formula)

Let $\mathbf{R} = (R_{\ell})$, $\mathbf{R}' = (R'_{\ell})$ be independent densable sequences of permutation invariant random subsets of the sequence of sets $\mathbf{B} = (B_{\ell})$.

If dens \mathbf{R} + dens $\mathbf{R}' \neq 1$, then the sequence $\mathbf{R} \cap \mathbf{R}'$ is densable and permutation invariant.

Theorem (The intersection formula)

Let $\mathbf{R} = (R_{\ell})$, $\mathbf{R}' = (R'_{\ell})$ be independent densable sequences of permutation invariant random subsets of the sequence of sets $\mathbf{B} = (B_{\ell})$.

If dens \mathbf{R} + dens $\mathbf{R}' \neq 1$, then the sequence $\mathbf{R} \cap \mathbf{R}'$ is densable and permutation invariant. In addition,

• If dens \mathbf{R} + dens \mathbf{R}' < 1, then a.a.s. $R_{\ell} \cap R'_{\ell} = \emptyset$, i.e.

 $\operatorname{dens}(\boldsymbol{R} \cap \boldsymbol{R}') = -\infty.$

• If dens ${m R}+$ dens ${m R}'>1$, then a.a.s. $R_\ell\cap R'_\ell
eq {m \emptyset}$ and

 $dens(\mathbf{R} \cap \mathbf{R}') = dens \mathbf{R} + dens \mathbf{R}' - 1.$

Theorem (The random-fixed intersection formula)

Let $\mathbf{R} = (R_{\ell})$ be a densable sequence of permutation invariant random subsets. Let $\mathbf{X} = (X_{\ell})$ be a densable sequence of fixed subsets.

If dens \mathbf{R} + dens $\mathbf{X} \neq 1$, then the sequence $\mathbf{R} \cap \mathbf{X}$ is densable.

Theorem (The random-fixed intersection formula)

Let $\mathbf{R} = (R_{\ell})$ be a densable sequence of permutation invariant random subsets. Let $\mathbf{X} = (X_{\ell})$ be a densable sequence of fixed subsets.

If dens \mathbf{R} + dens $\mathbf{X} \neq 1$, then the sequence $\mathbf{R} \cap \mathbf{X}$ is densable. In addition,

• If dens \mathbf{R} + dens \mathbf{X} < 1, then a.a.s. $R_{\ell} \cap X_{\ell} = \emptyset$, i.e.

 $dens(\boldsymbol{R} \cap \boldsymbol{X}) = -\infty.$

• If dens \mathbf{R} + dens \mathbf{X} > 1, then a.a.s. $R_{\ell} \cap X_{\ell} \neq \emptyset$ and

 $dens(\boldsymbol{R} \cap \boldsymbol{X}) = dens \, \boldsymbol{R} + dens \, \boldsymbol{X} - 1.$

Application to random groups

 B_ℓ = the set of cyclically reduced relators of length at most ℓ , $|B_\ell| = (2m-1)^{d\ell+O(1)}$.

Definition (The permutation invariant density model of random groups)

Let $m \ge 2$, $d \in [0,1]$. A sequence of random groups $(G_{\ell}(m,d))$ with m generators of **density d** is defined by

$$G_{\ell}(m,d) = \langle x_1,\ldots,x_m | R_{\ell} \rangle$$

where $\mathbf{R} = (R_{\ell})$ is a *densable* sequence of *permutation invariant* random subsets of $\mathbf{B} = (B_{\ell})$ of density d.

Application to random groups

 B_ℓ = the set of cyclically reduced relators of length at most ℓ , $|B_\ell| = (2m-1)^{d\ell+O(1)}$.

Definition (The permutation invariant density model of random groups)

Let $m \ge 2$, $d \in [0,1]$. A sequence of random groups $(G_{\ell}(m,d))$ with m generators of **density d** is defined by

$$\mathcal{G}_\ell(m,d) = \langle x_1,\ldots,x_m | R_\ell
angle$$

where $\mathbf{R} = (R_{\ell})$ is a *densable* sequence of *permutation invariant* random subsets of $\mathbf{B} = (B_{\ell})$ of density d.

Example: Let X_{ℓ} be the set of relators in B_{ℓ} of type $r = w^2$. We have $|X_{\ell}| = (2m - 1)^{d\ell/2 + O(1)}$, so dens X = 1/2.

- If d + 1/2 < 1, then a.a.s. there is no relator of type w^2 in R_{ℓ} .
- If d + 1/2 > 1, then a.a.s. there exists relators of type w^2 in R_{ℓ} .

- 1. Random groups and phase transitions
- 2. Main tool: The intersection formula
- 3. Free subgroups in random groups
- 4. Van Kampen diagrams in random groups
- 5. Open questions

Theorem (The Freiheitssatz ("freedom theorem" in German), Magnus 1933)

Let G be a group defined by a presentation with a single cyclically reduced relator

$$G = \langle x_1, \ldots, x_m | r \rangle.$$

If x_m appears in r, then x_1, \ldots, x_{m-1} freely generate a free subgroup of G.

Theorem (The Freiheitssatz ("freedom theorem" in German), Magnus 1933)

Let G be a group defined by a presentation with a single cyclically reduced relator

$$G = \langle x_1, \ldots, x_m | r \rangle.$$

If x_m appears in r, then x_1, \ldots, x_{m-1} freely generate a free subgroup of G.

Given a group presentation with m generators

$$G = \langle x_1, \ldots, x_m | R \rangle.$$

If the first (m-1) generators x_1, \ldots, x_{m-1} freely generate a free subgroup, then it is called a "Freiheitssatz presentation".

For few relator random groups

For few relator random groups (a particular case of density 0), there is a much stronger result:

Theorem (Arzhantseva-Ol'shanskii 1996)

Let (G_{ℓ}) be a sequence of random groups with m generators and k relators (k is fixed, independent of ℓ), defined by

$$G_{\ell} = \langle x_1, \ldots, x_m | r_1, \ldots, r_k \rangle$$

with $|r_i| \leq \ell$ randomly chosen (uniformly among all possible choices).

If $m \ge 2$ and $k \ge 1$, then a.a.s. every (m-1)-generated subgroup of G_{ℓ} is free.

In particular, a.a.s. the presentation of G_{ℓ} is a Freiheitssatz presentation.

For the density model of random groups

For the density model, copying the proof of Arzhantseva and Ol'shanskii:

Theorem

Let $(G_{\ell}(m, d))$ be a sequence of random groups at density d, defined by

$$G_{\ell}(m,d) = \langle x_1,\ldots,x_m | R_{\ell} \rangle.$$

If $d < \frac{1}{120m^2 \ln(2m)} \sim \frac{1}{m^2 \ln m}$, then a.a.s. every (m-1)-generated subgroup of G_ℓ is free.

In particular, if $d < \frac{1}{120m^2 \ln(2m)} \sim \frac{1}{m^2 \ln m}$, then a.a.s. the presentation of $G_{\ell}(m, d)$ is a Freiheitssatz presentation.

Question

Is the density $d \sim \frac{1}{m^2 \ln m}$ optimal for this property?

Is there a phase transition for this property?

Question

Is the density $d \sim \frac{1}{m^2 \ln m}$ optimal for this property?

Is there a phase transition for this property?

More generally, (m-1) can be replaced by any integer $1 \le r \le m-1$.

Question

Let $1 \le r \le m-1$. Does there exist a critical density d(m, r) such that

- if d < d(m, r) then a.a.s. every r-generated subgroup of $G_{\ell}(m, d)$ is free;
- if d > d(m, r) then a.a.s. there exists a non-free r-generated subgroup in $G_{\ell}(m, d)$?

The phase transition at density d_r

Let $1 \le r \le m - 1$. There is a **phase transition** at density

$$d_r = \min\left\{\frac{1}{2}, 1 - \log_{2m-1}(2r-1)\right\}.$$
The phase transition at density d_r

Let $1 \le r \le m - 1$. There is a **phase transition** at density

$$d_r=\min\left\{rac{1}{2},1-\log_{2m-1}(2r-1)
ight\}.$$

Theorem

Let $(G_{\ell}(m, d)) = (\langle x_1, \dots, x_m | R_{\ell} \rangle)$ be a sequence of random groups with m generators at density d.

• If $d < d_r$, then a.a.s. every r-generated subgroup of $G_{\ell}(m, d)$ with "small" generators (i.e. $H = \langle y_1, \ldots, y_r \rangle$ with lengths $|y_i| \le \frac{d_r - d}{30r} \ell$) is free and quasi-convex.

In particular, a.a.s. the first r generators x_1, \ldots, x_r freely generate a free subgroup.

If d > d_r, then a.a.s. the first r generators x₁,..., x_r generate the whole group G_l(m, d) (which is not free).

• If $d_r = 1/2$, then a.a.s. $G_{\ell}(m, d)$ is trivial. Suppose that $d_r = 1 - \log_{2m-1}(2r - 1)$.

•

- If $d_r = 1/2$, then a.a.s. $G_{\ell}(m, d)$ is trivial. Suppose that $d_r = 1 \log_{2m-1}(2r 1)$.
- Let $X_{\ell} = \{x_{r+1}w \mid w \text{ is a word of } x_1, \dots, x_r\} \subset B_{\ell}$. $|X_{\ell}| = (2r-1)^{\ell+O(1)}$, so $\operatorname{dens}_{\boldsymbol{B}} \boldsymbol{X} = \log_{2m-1}(2r-1)$

.

- If $d_r = 1/2$, then a.a.s. $G_\ell(m, d)$ is trivial. Suppose that $d_r = 1 \log_{2m-1}(2r 1)$.
- Let $X_{\ell} = \{x_{r+1}w \mid w \text{ is a word of } x_1, \dots, x_r\} \subset B_{\ell}$. $|X_{\ell}| = (2r-1)^{\ell+O(1)}$, so $\operatorname{dens}_{\boldsymbol{B}} \boldsymbol{X} = \log_{2m-1}(2r-1)$
- By the intersection formula, dens *R* + dens *X* > d_r + log_{2m-1}(2r − 1) = 1, so a.a.s. R_ℓ ∩ X_ℓ is not empty.

.

- If $d_r = 1/2$, then a.a.s. $G_\ell(m, d)$ is trivial. Suppose that $d_r = 1 \log_{2m-1}(2r 1)$.
- Let $X_{\ell} = \{x_{r+1}w \mid w \text{ is a word of } x_1, \dots, x_r\} \subset B_{\ell}$. $|X_{\ell}| = (2r-1)^{\ell+O(1)}$, so $\operatorname{dens}_{\boldsymbol{B}} \boldsymbol{X} = \log_{2m-1}(2r-1)$
- By the intersection formula, dens *R* + dens *X* > d_r + log_{2m-1}(2r − 1) = 1, so a.a.s. R_ℓ ∩ X_ℓ is not empty.
- Hence, a.a.s. x_{r+1} can be written as a word w^{-1} of x_1, \ldots, x_r in $G_{\ell}(m, d)$.

.

- If $d_r = 1/2$, then a.a.s. $G_\ell(m, d)$ is trivial. Suppose that $d_r = 1 \log_{2m-1}(2r 1)$.
- Let $X_{\ell} = \{x_{r+1}w \mid w \text{ is a word of } x_1, \dots, x_r\} \subset B_{\ell}$. $|X_{\ell}| = (2r-1)^{\ell+O(1)}$, so $\operatorname{dens}_{\boldsymbol{B}} \boldsymbol{X} = \log_{2m-1}(2r-1)$
- By the intersection formula, dens *R* + dens *X* > d_r + log_{2m-1}(2r − 1) = 1, so a.a.s. R_ℓ ∩ X_ℓ is not empty.
- Hence, a.a.s. x_{r+1} can be written as a word w^{-1} of x_1, \ldots, x_r in $G_{\ell}(m, d)$.
- Apply the same argument to the other generators x_{r+2}, \ldots, x_m .

The phase transition at density d_r

Let r = r(m, d) be the maximal number such that a.a.s. x_1, \ldots, x_r freely generate a free subgroup of $G_{\ell}(m, d)$.

r(m, d) with m = 10 generators

Corollary

If $d_r < d < d_{r-1}$, then a.a.s. the random group $G_{\ell}(m, d) = \langle x_1, \dots, x_m | R_{\ell} \rangle$ has an aspherical presentation with r generators

 $\langle x_1,\ldots,x_r|R'_\ell\rangle$

such that the first r - 1 generators x_1, \ldots, x_{r-1} freely generate a free subgroup.

That is to say, if d is not one of the d_r , then a.a.s. the random group $G_{\ell}(m, d)$ has a Freiheitssatz presentation.

Remark: In this presentation, the relator lengths in R'_{ℓ} vary from ℓ to ℓ^2 .

Corollary

If $d_r < d < d_{r-1}$, then a.a.s. the random group $G_{\ell}(m, d) = \langle x_1, \dots, x_m | R_{\ell} \rangle$ has an aspherical presentation with r generators

 $\langle x_1,\ldots,x_r|R'_\ell\rangle$

such that the first r - 1 generators x_1, \ldots, x_{r-1} freely generate a free subgroup.

That is to say, if d is not one of the d_r , then a.a.s. the random group $G_{\ell}(m, d)$ has a Freiheitssatz presentation.

Remark: In this presentation, the relator lengths in R'_{ℓ} vary from ℓ to ℓ^2 .

"[...] What does a random group look like?

Corollary

If $d_r < d < d_{r-1}$, then a.a.s. the random group $G_{\ell}(m, d) = \langle x_1, \dots, x_m | R_{\ell} \rangle$ has an aspherical presentation with r generators

 $\langle x_1,\ldots,x_r|R'_\ell\rangle$

such that the first r - 1 generators x_1, \ldots, x_{r-1} freely generate a free subgroup.

That is to say, if d is not one of the d_r , then a.a.s. the random group $G_{\ell}(m, d)$ has a Freiheitssatz presentation.

Remark: In this presentation, the relator lengths in R'_{ℓ} vary from ℓ to ℓ^2 .

"[...] What does a random group look like? [...] Nothing like we have ever seen before."

— M. Gromov, "Spaces and Questions" 2000.

Freiheitssatz for Random groups

In particular, if $d < d_{m-1} \sim \frac{1}{m \ln m}$, then a.a.s. the presentation defining $G_{\ell}(m, d)$ is a Freiheitssatz presentation.

Freiheitssatz for Random groups

In particular, if $d < d_{m-1} \sim \frac{1}{m \ln m}$, then a.a.s. the presentation defining $G_{\ell}(m, d)$ is a Freiheitssatz presentation.

This bound is much larger than the previous bound (by the few relator model method) $\sim \frac{1}{m^2 \ln m}$.

Freiheitssatz for Random groups

In particular, if $d < d_{m-1} \sim \frac{1}{m \ln m}$, then a.a.s. the presentation defining $G_{\ell}(m, d)$ is a Freiheitssatz presentation.

This bound is much larger than the previous bound (by the few relator model method) $\sim \frac{1}{m^2 \ln m}$.

Question

Is it true that, if $d < d_r$, then a.a.s. every r-generated subgroup of $G_{\ell}(m, d)$ is free?

The question is still open. If it is true, then at density $d_r < d < d_{r-1}$, a.a.s.

- every (r-1)-generated subgroup of $G_\ell(m,d)$ is free
- and $G_{\ell}(m, d)$ is *r*-generated by not free,

so a.a.s. the rank of $G_{\ell}(m, d)$ is r.

- 1. Random groups and phase transitions
- 2. Main tool: The intersection formula
- 3. Free subgroups in random groups
- 4. Van Kampen diagrams in random groups
- 5. Open questions

Van Kampen diagrams

Definition

A van Kampen diagram with respect to a group presentation $G = \langle X | R \rangle$ is a finite, planar (embedded in \mathbb{R}^2) and simply connected 2-complex D such that:

- Every face has a preferred boundary loop (a starting point and an orientation).
- Every edge is labeled by a generator $x \in X^{\pm}$.
- Every face is labeled by a relator r ∈ R such that the word read on the preferred boundary loop is r.

Van Kampen diagrams

Definition

A van Kampen diagram with respect to a group presentation $G = \langle X | R \rangle$ is a finite, planar (embedded in \mathbb{R}^2) and simply connected 2-complex D such that:

- Every face has a preferred boundary loop (a starting point and an orientation).
- Every edge is labeled by a generator $x \in X^{\pm}$.
- Every face is labeled by a relator r ∈ R such that the word read on the preferred boundary loop is r.

Van Kampen diagrams

Definition

A van Kampen diagram with respect to a group presentation $G = \langle X | R \rangle$ is a finite, planar (embedded in \mathbb{R}^2) and simply connected 2-complex D such that:

- Every face has a preferred boundary loop (a starting point and an orientation).
- Every edge is labeled by a generator $x \in X^{\pm}$.
- Every face is labeled by a relator r ∈ R such that the word read on the preferred boundary loop is r.

A pair of faces in a van Kampen diagram *reducible* if they have the same label and there is a common edge on their boundaries at the same position.

A van Kampen diagram is called *reduced* if there is no reducible pair of faces.

A pair of faces in a van Kampen diagram *reducible* if they have the same label and there is a common edge on their boundaries at the same position.

A van Kampen diagram is called *reduced* if there is no reducible pair of faces.

In the following, a 2-complex is *finite*, *planar* and *simply connected*.

For a van Kampen diagram D, |D| = the number of faces, $|\partial D| =$ the boundary length.

Proposition (Gromov 1993, Ollivier 2004)

Let $(G_{\ell}(m, d))$ be a sequence of random groups at density d. Let K > 0 be an integer.

If d < 1/2, then for any s > 0 a.a.s. every reduced van Kampen diagram D of $G_{\ell}(m, d)$ with $|D| \le K$ satisfies the isoperimetric inequality

$$|\partial D| \ge (1-2d-s)|D|\ell.$$

Is the converse true?

Question

If a 2-complex D with $|D| \le K$ (and $|\partial f| \le \ell$ for any face f of D) satisfies the inequality

 $|\partial D| \ge (1-2d+s)|D|\ell.$

does there exist (a.a.s.) a reduced van Kampen diagram of $G_{\ell}(m, d)$ whose underlying 2-complex is D?

Is the converse true?

Question

If a 2-complex D with $|D| \le K$ (and $|\partial f| \le \ell$ for any face f of D) satisfies the inequality

 $|\partial D| \ge (1-2d+s)|D|\ell.$

does there exist (a.a.s.) a reduced van Kampen diagram of $G_{\ell}(m, d)$ whose underlying 2-complex is D?

It is not true in general.

Counterexample

Let $(G_{\ell}(m, d))$ be a sequence of random groups at density d = 0.4. Let D be the following 2-complex.

 $0.8\ell > (1-2 imes 0.4) imes 3\ell = 0.6\ell$

Counterexample

Let $(G_{\ell}(m, d))$ be a sequence of random groups at density d = 0.4. Let D be the following 2-complex.

 $0.8\ell > (1-2 imes 0.4) imes 3\ell = 0.6\ell$

$$0.2\ell < (1-2\times 0.4)\times 2\ell = 0.4\ell$$

Counterexample

Let $(G_{\ell}(m, d))$ be a sequence of random groups at density d = 0.4. Let D be the following 2-complex.

 $0.8\ell > (1 - 2 \times 0.4) \times 3\ell = 0.6\ell$

D' is not a v.K. diagram of $G_{\ell}(m, d)$, so D neither.

Geometrical form of 2-complexes

Consider a sequence of 2-complexes $\boldsymbol{D} = (D_{\ell})$ of the same "geometrical form".

Geometrical form of 2-complexes

Consider a sequence of 2-complexes $\boldsymbol{D}=(D_\ell)$ of the same "geometrical form". i.e.

- They have the same topological form.
- For any face f of D_{ℓ} , $|\partial f| \leq \ell$.
- The corresponding maximal arc lengths are $\lambda_1 \ell, \ldots, \lambda_k \ell$.

(A maximal arc = a simple path passing by vertices of valency 2, with endpoints of valency \neq 2.)

Geometrical form of 2-complexes

Consider a sequence of 2-complexes $\boldsymbol{D} = (D_\ell)$ of the same "geometrical form". i.e.

- They have the same topological form.
- For any face f of D_{ℓ} , $|\partial f| \leq \ell$.
- The corresponding maximal arc lengths are $\lambda_1 \ell, \ldots, \lambda_k \ell$.

(A maximal arc = a simple path passing by vertices of valency 2, with endpoints of valency \neq 2.)

Definition (Density of a sequence of diagrams)

The density of D is

dens
$$\boldsymbol{D} = rac{\sum_{i=1}^{k} \lambda_i}{|\boldsymbol{D}|} \quad \left(= \lim_{\ell \to \infty} rac{\mathsf{Edge}(D_\ell)}{|D_\ell|\ell} \right)$$

According to the counterexample, every sub-2-complex should be considered.

DefinitionThe critical density of
$$D$$
 is $dens_c(D) = \min_{D' \le D} dens(D').$

Note that dens_c $\boldsymbol{D} \leq \text{dens } \boldsymbol{D}$.

Theorem

Let $(G_{\ell}(m, d))$ be a sequence of random groups at density d. Let K > 0. Let $\mathbf{D} = (D_{\ell})$ be a sequence of 2-complexes of the same geometrical form, with K faces.

- If d > 1 − dens_c(D), then a.a.s. there exists a reduced van Kampen diagram of G_ℓ(m, d) whose underlying 2-complex is D_ℓ.
- If d < 1 − dens_c(D), then a.a.s. there is no reduced van Kampen diagram of G_ℓ(m, d) whose underlying 2-complex is D_ℓ.

Phase transition for existence of van Kampen diagrams

Corollary (of the first point)

Let D be a 2-complex with K faces and $|\partial f| = \ell$ for every face f of D_{ℓ} . For any s > 0, if every sub-2-complex D' of D satisfies the isoperimetric inequality

$$|\partial D'| \geq (1-2d+s)|D'|\ell,$$

then a.a.s. in $G_{\ell}(m, d)$, there exists a reduced van Kampen diagram of whose underlying 2-complex is D.

Applications: Phase transition for $C'(\lambda)$ condition

The random group $G_{\ell}(m, d)$ does not satisfy $C'(\lambda)$ if there exists a reduced van Kampen of the following form D_{ℓ} .

$$(1-\lambda)\ell$$
 $\lambda\ell$ $(1-\lambda)\ell$ $\operatorname{dens}_{c} \boldsymbol{D} = 1-\lambda/2$

Applications: Phase transition for $C'(\lambda)$ condition

The random group $G_{\ell}(m, d)$ does not satisfy $C'(\lambda)$ if there exists a reduced van Kampen of the following form D_{ℓ} .

$$(1-\lambda)\ell$$
 $\lambda\ell$ $(1-\lambda)\ell$ $\operatorname{dens}_{c} \boldsymbol{D} = 1-\lambda/2$

Application (Gromov 1993, Bassino-Nicaud-Weil 2020)

Let $0 < \lambda < 1$. There is a phase transition at density $d = \lambda/2$: (i) If $d < \lambda/2$, then a.a.s. $G_{\ell}(m, d)$ satisfies $C'(\lambda)$. (ii) If $d > \lambda/2$, then a.a.s. $G_{\ell}(m, d)$ does not satisfy $C'(\lambda)$.

Applications: Phase transition for C(p) condition

Application

Let $p \ge 2$ be an integer. There is a phase transition at density $d = \frac{1}{p+1}$:

(i) If
$$d < \frac{1}{p+1}$$
, then a.a.s. $G_{\ell}(m, d)$ satisfies $C(p)$.

(ii) If $d > \frac{1}{p+1}$, then a.a.s. $G_{\ell}(m, d)$ does not satisfy C(p).

The phase transition for existence of diagrams holds for *non-planar* 2-complexes, with some more conditions...

The phase transition for existence of diagrams holds for *non-planar* 2-complexes, with some more conditions...

The condition $|D| \leq K$ is not enough and should be replaced by:

Definition (Complexity)

A 2-complex D is of complexity K if:

- $|D| \leq K$.
- The number of maximal arcs of D is bounded by K.
- For any face f of D, the boundary path ∂f is divided into at most K maximal arcs.

Remark: If D is planar and simply connected with $|D| \leq K$, then it is with complexity 6K.
Phase transition for existence of van Kampen 2-complexes

Theorem

Let $(G_{\ell}(m, d))$ be a sequence of random groups at density d. Let K > 0. Let $\mathbf{D} = (D_{\ell})$ be a sequence of 2-complexes of the same geometrical form, of complexity K.

- If d > 1 − dens_c(D), then a.a.s. there exists a reduced van Kampen 2-complex of G_ℓ(m, d) whose underlying 2-complex is D_ℓ.
- If d < 1 − dens_c(D), then a.a.s. there is no reduced van Kampen 2-complex of G_ℓ(m, d) whose underlying 2-complex is D_ℓ.

Let $D = (D_{\ell})$ be a sequence of (non-planar) 2-complexes of the same geometrical form, with complexity K.

If D_{ℓ} does not collapse to a graph, then there exists a sub 2-complex such that every edge is adjacent to at least 2 faces. So dens_c $D \leq \frac{1}{2} < 1 - d$.

Let $D = (D_{\ell})$ be a sequence of (non-planar) 2-complexes of the same geometrical form, with complexity K.

If D_{ℓ} does not collapse to a graph, then there exists a sub 2-complex such that every edge is adjacent to at least 2 faces. So dens_c $D \leq \frac{1}{2} < 1 - d$.

Proposition

If D_{ℓ} is the underlying 2-complex of a reduced van Kampen 2-complex of $G_{\ell}(m, d)$ with d < 1/2, then D_{ℓ} collapses to a graph.

- 1. Random groups and phase transitions
- 2. Main tool: The intersection formula
- 3. Free subgroups in random groups
- 4. Van Kampen diagrams in random groups
- 5. Open questions

Let $S = (S_{\ell})$ be a sequence of 2-complexes of the same geometrical form. If S_{ℓ} is a surface of genus g with $|S_{\ell}| \leq K$, then it is with complexity 10gK, and we have

$$\mathsf{dens}_{m{c}} \, m{\mathcal{S}} \leq rac{1}{2}.$$

Proposition

Let $(G_{\ell}(m, d))$ be a sequence of random groups at density d. Let $g \ge 0$, $K \ge 1$.

Let $g \ge 0$. If d < 1/2, then a.a.s. $G_{\ell}(m, d)$ does not contain any surface S_{ℓ} of genus g with $|S_{\ell}| \le K$.

Existence of surfaces with a fixed genus

Can we remove the condition $|S_{\ell}| \leq K$?

Question

Given $g \ge 0$. Is it true that, if d < 1/2, then a.a.s. $G_{\ell}(m, d)$ does not contain any surface subgroup of genus g?

Existence of surfaces with a fixed genus

Can we remove the condition $|S_{\ell}| \leq K$?

Question

Given $g \ge 0$. Is it true that, if d < 1/2, then a.a.s. $G_{\ell}(m, d)$ does not contain any surface subgroup of genus g?

It is true for g = 0, because a.a.s. the presentation of $G_{\ell}(m, d)$ is aspherical. It is true for g = 1, because a.a.s. the $G_{\ell}(m, d)$ is hyperbolic (contain no \mathbb{Z}^2).

Existence of surfaces with a fixed genus

Can we remove the condition $|S_{\ell}| \leq K$?

Question

Given $g \ge 0$. Is it true that, if d < 1/2, then a.a.s. $G_{\ell}(m, d)$ does not contain any surface subgroup of genus g?

It is true for g = 0, because a.a.s. the presentation of $G_{\ell}(m, d)$ is aspherical. It is true for g = 1, because a.a.s. the $G_{\ell}(m, d)$ is hyperbolic (contain no \mathbb{Z}^2).

The genus g should be given in advance (i.e. should not depend on ℓ).

Theorem (Calegari-Walker 2015)

If d < 1/2, then a.a.s. $G_{\ell}(m, d)$ contains surface subgroups of genus $g = O(\ell)$.

Let F_m be a free group with a generating set $X_m = \{x_1, \ldots, x_m\}$.

Let Γ be a graph labeled by X_m^{\pm} , then

$$F_m/\Gamma := F_m/\langle\langle \text{words of loops of } \Gamma
angle
angle$$

defines a group.

If Γ is a randomly labeled graph, then F_m/Γ is a random group.

The graph model of random groups

Ramanujan graph:

Let $p, q \ge 3$ be prime numbers congruent to 1 modulo 4, p < q, with the Legendre symbol $\left(\frac{p}{q}\right) = -1$.

C(p,q) = the Cayley graph of $PGL_2(\mathbb{F}_q)$ with a certain set of (p+1)/2 generators. C(p,q,j) = divide every edge of C(p,q) into j edges. $\Gamma(p,q,j) =$ randomly (non-reduced) label of C(p,q,j) by X_m^{\pm} .

 $G_q(m,p,j) = F_m/\Gamma(p,q,j).$

The graph model of random groups

Ramanujan graph:

Let $p, q \ge 3$ be prime numbers congruent to 1 modulo 4, p < q, with the Legendre symbol $\left(\frac{p}{q}\right) = -1$.

C(p,q) = the Cayley graph of $PGL_2(\mathbb{F}_q)$ with a certain set of (p+1)/2 generators. C(p,q,j) = divide every edge of C(p,q) into j edges. $\Gamma(p,q,j) =$ randomly (non-reduced) label of C(p,q,j) by X_m^{\pm} .

$$G_q(m, p, j) = F_m/\Gamma(p, q, j).$$

We are interested in the asymptotic behaviors of the sequence of random groups

 $(G_q(m, p, j))_q$ prime, $q \neq p$.

Theorem (Gromov 2003)

For any $m \ge 2$ and any $p \ge 3$, there exists j_0 large enough such that, for any $j \ge j_0$, a.a.s. (when $q \to \infty$) the random group $G_q(m, p, j)$ is non-elementary hyperbolic.

Theorem (Gromov 2003)

For any $m \ge 2$ and any $p \ge 3$, there exists j_0 large enough such that, for any $j \ge j_0$, a.a.s. (when $q \to \infty$) the random group $G_q(m, p, j)$ is non-elementary hyperbolic.

Question

Is there a phase transition for this property? More precisely, does there exist a function c = c(m, p, j) such that (i) if c > 1, then a.a.s. $G_q(m, p, j)$ is trivial, (ii) if c < 1, then a.a.s. $G_q(m, p, j)$ is non-elementary hyperbolic?

A guess on c = c(m, p, j)

Let ρ_q be the girth (smallest simple cycle length) of $\Gamma(p, q, j)$. Let R_q be the set of words read on simple cycles of $\Gamma(p, q, j)$ of length ρ_q , then dens $\mathbf{R} = (R_q)$ is the density of relators.

A guess on c = c(m, p, j)

Let ρ_q be the girth (smallest simple cycle length) of $\Gamma(p, q, j)$. Let R_q be the set of words read on simple cycles of $\Gamma(p, q, j)$ of length ρ_q , then dens $\mathbf{R} = (R_q)$ is the density of relators.

Let X_q be the (fixed) set of non-reduced words of length ρ_q that are trivial in F_m .

Question

Does the intersection formula hold between **R** and **X** (in $B = (B_q)$)? If it does, is it true that the phase transition happens at

$$c(m, p, j) = \operatorname{dens} \boldsymbol{R} + \operatorname{dens} \boldsymbol{X}$$
$$= \frac{7}{4j} \log_{2m}(p) + \log_{2m}(2\sqrt{2m-1}) = 1?$$
$$(?) \qquad (\text{known})$$

Definition

Two bi-infinite geodesics in a hyperbolic space are called parallel if they have the same pair of limit points at the boundary and they have no intersection.

A set of $k \ge 2$ bi-infinite geodesics are called parallel if they are pairwise parallel.

Definition

Two bi-infinite geodesics in a hyperbolic space are called parallel if they have the same pair of limit points at the boundary and they have no intersection.

A set of $k \ge 2$ bi-infinite geodesics are called parallel if they are pairwise parallel.

Proposition (Gruber-Mackay 2018)

If $d < \frac{11-\sqrt{41}}{12}$, then a.a.s. there exists an integer k = k(d) such that the number of parallel geodesics in a random triangular group at density d is bounded by k. In particular, a.a.s. the injectivity radius (smallest stable length) is at least 1/k.

Parallel geodesics and injectivity radius

In the Gromov density model:

Proposition

If d < 1/4, then a.a.s. the number of parallel geodesics in a random group at density d is bounded by

$$k=2+\frac{2d}{1-4d}.$$

In particular, a.a.s. the injectivity radius is at least 1/k.

Parallel geodesics and injectivity radius

In the Gromov density model:

Proposition

If d < 1/4, then a.a.s. the number of parallel geodesics in a random group at density d is bounded by

$$k=2+\frac{2d}{1-4d}.$$

In particular, a.a.s. the injectivity radius is at least 1/k.

Is there a phase transition?

Question

If $d > \frac{1}{4}$, is it true the number of parallel geodesics is not uniformly bounded (when $\ell \to \infty$)? (i.e. for any $k \ge 0$ a.a.s. the number of parallel geodesics is larger than k.)