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What is a random group?

Definition

A random group G is a random variable with values in a given (finite) set of groups.

For a group property P, we are interested in

Pr(G satisfies P).
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What is a random group?

Definition

A random group G is a random variable with values in a given (finite) set of groups.

For a group property P, we are interested in

Pr(G satisfies P).

A random group is often constructed by a presentation with fixed generators and random
relators:

G={( Xiy.oesXm | n...,r ).
N——— N———
fixed random

Relators considered are cyclically reduced.
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Asymptotic behaviors

We are interested in the “asymptotic behaviors” when the maximal relator length
¢ = max{|r|,...,|rc|} goes to infinity.
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Asymptotic behaviors

We are interested in the “asymptotic behaviors” when the maximal relator length
¢ = max{|r|,...,|rc|} goes to infinity.

Definition
Let (Gg)¢>1 be a sequence of random groups defined by

Gg = <X1, 000 ,Xm‘Rg>
where Ry is a random set of cyclically reduced relators of lengths at most .

Let (P¢)¢>1 be a sequence of group properties. We say that G, satisfies P, asymptotically
almost surely (a.a.s.) if
Pr(Gy satisfies P;)) —— 1.
l—o0
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The density model of random groups

Definition (Gromov 1993)

Let m > 2, d € [0,1]. A sequence of random groups (Gy(m, d)) with m generators at density
d is defined by
Ge(m,d) = (x1,...,Xm|Re)

where Ry is a random set of cyclically reduced relators of lengths at most ¢, with

IRl = [(2m — 1)¥],

uniformly chosen among all possible choices.
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The density model of random groups

Definition (Gromov 1993)

Let m > 2, d € [0,1]. A sequence of random groups (Gy(m, d)) with m generators at density
d is defined by
Ge(m,d) = (x1,...,Xm|Re)

where Ry is a random set of cyclically reduced relators of lengths at most ¢, with
Re| = [(2m — 1)},

uniformly chosen among all possible choices.

Denote By as the set of cyclically reduced words of length at most ¢, we have
1By = (2m — 1)+O00), 5o |Ry| = |By|dTo(L).
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The first result: phase transition at density 1/2

Theorem (Gromov 1993)

e Ifd>1/2, then a.a.s. Gy(m,d) is a trivial group.

e Ifd <1/2, then a.a.s. Gy(m,d) is non-elementary hyperbolic and torsion-free.
In addition, its presentation is aspherical.

More precisely (Ollivier 2007), a.a.s. the Cayley graph of Gy(m, d) is d-hyperbolic with
4¢
1-2d°
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The first result: phase transition at density 1/2

Theorem (Gromov 1993)

e Ifd>1/2, then a.a.s. Gy(m,d) is a trivial group.

® Ifd <1/2, then a.a.s. Gy(m,d) is non-elementary hyperbolic and torsion-free.
In addition, its presentation is aspherical.

More precisely (Ollivier 2007), a.a.s. the Cayley graph of Gy(m, d) is d-hyperbolic with
4¢

Question (Gromov 2003)

Is there any other interesting phase transition?
For a sequence of group properties (P;), does there exist a critical density d. such that

® Ifd < d, then a.a.s. Gy(m,d) satisfies Py;
e |fd > d, then a.a.s. Gy(m,d) does not satisfy P,?
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Density of a subset

Definition (Density of a subset)
The density of a subset X of a finite set B is

densg X = log|(|X]).
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Density of a subset

Definition (Density of a subset)
The density of a subset X of a finite set B is

densg X = log|(|X]).

If B is a finite dimensional vector space over a finite field and X is a affine subspace, then
dim X

dim B’

If R, R’ are affine subspaces in general position, then

dim(RNR') =dim R+ dim R' — dim B,

densg X =
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Density of a subset

Definition (Density of a subset)
The density of a subset X of a finite set B is

densg X = log|(|X]).

If B is a finite dimensional vector space over a finite field and X is a affine subspace, then
dim X

dim B’

If R, R’ are affine subspaces in general position, then

dim(RNR') =dim R+ dim R' — dim B,

densg X =

so
dens(RN R’) = dens R + dens R’ — 1.
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The intersection formula

Metatheorem (The intersection formula, Gromov 1993)

Independent "random subsets” R and R’ in a finite set B satisfy
dens(RNR') = dens R + dens R’ — 1,

with the convention

dens(RNR) <0 < RNR =0@.
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The intersection formula

Metatheorem (The intersection formula, Gromov 1993)

Independent "random subsets” R and R’ in a finite set B satisfy
dens(RNR') = dens R + dens R’ — 1,

with the convention

dens(RNR) <0 < RNR =0@.

This equality is not always true...

Let R, R be uniform distributions of cardinality |B|?, |B|¢', then Pr(RN R’ = @) > 0.
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The intersection formula

Metatheorem (The intersection formula, Gromov 1993)

Independent "random subsets” R and R’ in a finite set B satisfy

dens(RNR') = dens R + dens R’ — 1,

with the convention

dens(RNR) <0 < RNR =0@.

This equality is not always true...

Let R, R be uniform distributions of cardinality |B|?, |B|¢', then Pr(RN R’ = @) > 0.
We have

Pr(‘ dens(RNR') — (d +d' —1)| < E) —1

|B|—00
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Sequences of random subsets

Let B = (By) be a sequence of finite sets with |B;| — oo.
Let R = (Ry) be a sequence of random subsets of B = (By).
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Sequences of random subsets

Let B = (By) be a sequence of finite sets with |B;| — oo.
Let R = (Ry) be a sequence of random subsets of B = (By).

Definition (Densable sequences of random subsets)

We say that R = (Ry) is densable with density d if the sequence of random variables

densg,(R¢) = logg,|(|Re|)

converges in probability to the constant d € {—oco} U [0, 1].
We denote

densg R = d.
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Examples of densable sequences

Each of the following sequences of random subsets R = (Ry) is densable of density d.

® (The uniform model) Ry follows the uniform distribution in the set of subsets of By of
cardinality ||By|9].

® (The Bernoulli model) The events {r € Ry} through r € B, are independent of the same
probability |B|?~1. (Note that E(|R,|) = |B|9.)

® (The random map model) Let A, be a set with |A;| = [|B;|?]. Ry is the image of a
random map from Ay to By, uniformly chosen among all possible maps.
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Examples of densable sequences

Each of the following sequences of random subsets R = (Ry) is densable of density d.

® (The uniform model) Ry follows the uniform distribution in the set of subsets of By of
cardinality ||By|9].

® (The Bernoulli model) The events {r € Ry} through r € B, are independent of the same
probability |B|?~1. (Note that E(|R,|) = |B|9.)

® (The random map model) Let A, be a set with |A;| = [|B;|?]. Ry is the image of a
random map from Ay to By, uniformly chosen among all possible maps.

R is called permutation invariant if R, is measure invariant under the permutations of By.
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Formal statement of the intersection formula

Theorem (The intersection formula)

Let R = (Ry), R' = (R)) be independent densable sequences of permutation invariant
random subsets of the sequence of sets B = (By).

If dens R + dens R’ # 1, then the sequence R N R’ is densable and permutation invariant.
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Formal statement of the intersection formula

Theorem (The intersection formula)

Let R = (Ry), R' = (R)) be independent densable sequences of permutation invariant
random subsets of the sequence of sets B = (By).

If dens R 4 dens R’ # 1, then the sequence R N R’ is densable and permutation invariant. In
addition,

® /fdensR +densR’' < 1, then a.as. RRNR, =D, i.e
dens(RNR') = —oo.
® /fdens R+ densR’' > 1, then a.a.s. RyN R, # @ and

dens(RN R’) = dens R + dens R’ — 1.
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The random-fixed intersection formula

Theorem (The random-fixed intersection formula)

Let R = (Ry) be a densable sequence of permutation invariant random subsets. Let
X = (X¢) be a densable sequence of fixed subsets.

If dens R + dens X # 1, then the sequence R N X is densable.
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The random-fixed intersection formula

Theorem (The random-fixed intersection formula)

Let R = (Ry) be a densable sequence of permutation invariant random subsets. Let
X = (X¢) be a densable sequence of fixed subsets.

If dens R + dens X # 1, then the sequence R N X is densable. In addition,

e /[fdensR +dens X < 1, then a.a.s. ReNX, = @, i.e.

dens(RN X) = —o0.

e /fdensR +dens X > 1, then a.a.s. RyN X, # @ and

dens(RN X) = dens R + dens X — 1.
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Application to random groups

B, = the set of cyclically reduced relators of length at most ¢, |By| = (2m — 1)4¢+0(1),

Definition (The permutation invariant density model of random groups)

Let m > 2, d € [0,1]. A sequence of random groups (G;(m, d)) with m generators of density
d is defined by

G[(m, d) = <X1, 500 ,Xm‘Rg>

where R = (Ry) is a densable sequence of permutation invariant random subsets of B = (By)
of density d.
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Application to random groups

B, = the set of cyclically reduced relators of length at most ¢, |By| = (2m — 1)4¢+0(1),

Definition (The permutation invariant density model of random groups)

Let m > 2, d € [0,1]. A sequence of random groups (G;(m, d)) with m generators of density
d is defined by
Gg(m, d) = <X1, 600 ,Xm‘Rg>

where R = (Ry) is a densable sequence of permutation invariant random subsets of B = (By)
of density d.

Example: Let X; be the set of relators in B, of type r = w?.

We have |X;| = (2m — 1)9¢/240(1) 5o dens X = 1/2.
® If d +1/2 < 1, then a.a.s. there is no relator of type w? in Ry.
® If d +1/2 > 1, then a.a.s. there exists relators of type w? in Ry.
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Magnus' Freiheitssatz

Theorem (The Freiheitssatz (" freedom theorem” in German), Magnus 1933)

Let G be a group defined by a presentation with a single cyclically reduced relator
G = (X1,...,Xm|r).

If xm appears in r, then xi,...,xm_1 freely generate a free subgroup of G.
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Magnus' Freiheitssatz

Theorem (The Freiheitssatz (" freedom theorem” in German), Magnus 1933)

Let G be a group defined by a presentation with a single cyclically reduced relator
G = (X1,...,Xm|r).

If xm appears in r, then xi,...,xm_1 freely generate a free subgroup of G.

Given a group presentation with m generators
G=(x1,...,xm|R).

If the first (m — 1) generators x, ..., xm—1 freely generate a free subgroup, then it is called a
" Freiheitssatz presentation”.
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For few relator random groups

For few relator random groups (a particular case of density 0), there is a much stronger result:

Theorem (Arzhantseva-Ol’'shanskii 1996)

Let (Gy) be a sequence of random groups with m generators and k relators (k is fixed,
independent of (), defined by

Gg = <x1,...,xm|r1,...,rk>

with |rj| < ¢ randomly chosen (uniformly among all possible choices).

If m>2and k > 1, then a.a.s. every (m — 1)-generated subgroup of Gy is free.

In particular, a.a.s. the presentation of Gy is a Freiheitssatz presentation.
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For the density model of random groups

For the density model, copying the proof of Arzhantseva and Ol'shanskii:

Let (Gy(m, d)) be a sequence of random groups at density d, defined by

Gg(m, d) = <X1, 000 ,Xm|Rg>.

Ifd < then a.a.s. every (m — 1)-generated subgroup of Gy is free.

1
120m? In(2m) m?Ilnm’

In particular, if d < then a.a.s. the presentation of Gy(m,d) is a

1 o1
120m?2 In(2m) m2inm’
Freiheitssatz presentation.
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m2lnm

Is the density d ~ optimal for this property?

Is there a phase transition for this property?
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_1
m2lnm

Is the density d ~ optimal for this property?
Is there a phase transition for this property?

More generally, (m — 1) can be replaced by any integer 1 < r < m— 1.

Let 1 < r < m—1. Does there exist a critical density d(m, r) such that

e jfd < d(m,r) then a.a.s. every r-generated subgroup of Gy(m,d) is free;
® ifd > d(m,r) then a.a.s. there exists a non-free r-generated subgroup in Gy(m,d)?
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The phase transition at density d,

Let 1 < r < m—1. There is a phase transition at density

dr = min {;, 1 —logy,_1(2r — 1)} .
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The phase transition at density d,

Let 1 < r < m—1. There is a phase transition at density

dr = min {;, 1 —logy,_1(2r — 1)} .

Let (Gy(m,d)) = ({x1,...,xm|Re)) be a sequence of random groups with m generators at
density d.

® |fd < d,, then a.a.s. every r-generated subgroup of G¢(m,d) with "small” generators

(ie. H= (y1,...,yr) with lengths |y;| < ds’,ardé ) is free and quasi-convex.
In particular, a.a.s. the first r generators xi, ..., x, freely generate a free subgroup.
e |fd > d,, then a.a.s. the first r generators xi, ..., x, generate the whole group Gy(m, d)

(which is not free).
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Proof for the case d > d,

® If d, = 1/2, then a.a.s. Gy(m, d) is trivial. Suppose that d, = 1 — log,,,,_1(2r — 1).
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Proof for the case d > d,

® If d, = 1/2, then a.a.s. Gy(m, d) is trivial. Suppose that d, = 1 — log,,,,_1(2r — 1).
® Let Xy = {x,11w|w is a word of x1,...,x} C By.

1X,| = (2r — 1)14°0) 5o
densg X = logy,,_1(2r — 1)
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Proof for the case d > d,

® If d, = 1/2, then a.a.s. Gy(m, d) is trivial. Suppose that d, = 1 — log,,,,_1(2r — 1).
® Let Xy = {x,11w|w is a word of x1,...,x} C By.

1X,| = (2r — 1)14°0) 5o
densg X = logy,,_1(2r — 1)

® By the intersection formula, dens R + dens X > d, + log,,,_1(2r — 1) =1,
so a.a.s. Ry N Xy is not empty.
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Proof for the case d > d,

® If d, = 1/2, then a.a.s. Gy(m, d) is trivial. Suppose that d, = 1 — log,,,,_1(2r — 1).
® Let Xy = {x,11w|w is a word of x1,...,x} C By.

1X,| = (2r — 1)14°0) 5o
densg X = logy,,_1(2r — 1)

® By the intersection formula, dens R + dens X > d, + log,,,_1(2r — 1) =1,
so a.a.s. Ry N Xy is not empty.

® Hence, a.a.s. x,11 can be written as a word w™! of x1,...,x, in Gy(m,d).
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Proof for the case d > d,

® If d, = 1/2, then a.a.s. Gy(m, d) is trivial. Suppose that d, = 1 — log,,,,_1(2r — 1).

Let Xy = {x,41w | w is a word of x1,...,x,} C By.
1X,| = (2r — 1)14°0) 5o
densg X = logy,,_1(2r — 1)

® By the intersection formula, dens R + dens X > d, + log,,,_1(2r — 1) =1,
so a.a.s. Ry N Xy is not empty.

® Hence, a.a.s. x,11 can be written as a word w™! of x1,...,x, in Gy(m,d).

Apply the same argument to the other generators x, 12, ..., Xm. O
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The phase transition at density d,

Let r = r(m, d) be the maximal number such that a.a.s. xi,...,x, freely generate a free
subgroup of Gy(m, d).

10 5.
. @em-1)'"911
2
_ (@2m-1)1"9-1

2
—  r(m,d)

8
6
4
2
0

0O 01 02 03 04 05 06 07 08 09 1

r(m, d) with m = 10 generators
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Freiheitssatz for random groups

Ifd, < d < d,_1, then a.a.s. the random group Gy(m,d) = (x1,...,xm|R¢) has an aspherical
presentation with r generators

(X1, x| Rp)
such that the first r — 1 generators xi, ..., x,—1 freely generate a free subgroup.

That is to say, if d is not one of the d,, then a.a.s. the random group Gy(m, d) has a
Freiheitssatz presentation.

Remark: In this presentation, the relator lengths in R vary from £ to 2.
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Freiheitssatz for random groups

Ifd, < d < d,_1, then a.a.s. the random group Gy(m,d) = (x1,...,xm|R¢) has an aspherical
presentation with r generators

(X1, x| Rp)

such that the first r — 1 generators xi, ..., x,—1 freely generate a free subgroup.

That is to say, if d is not one of the d,, then a.a.s. the random group Gy(m, d) has a
Freiheitssatz presentation.

Remark: In this presentation, the relator lengths in R vary from £ to 2.

“[...] What does a random group look like?
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Freiheitssatz for random groups

Ifd, < d < d,_1, then a.a.s. the random group Gy(m,d) = (x1,...,xm|R¢) has an aspherical
presentation with r generators

(X1, x| Rp)

such that the first r — 1 generators xi, ..., x,—1 freely generate a free subgroup.

That is to say, if d is not one of the d,, then a.a.s. the random group Gy(m, d) has a
Freiheitssatz presentation.

Remark: In this presentation, the relator lengths in R vary from £ to 2.

“[...] What does a random group look like?  [...] Nothing like we have ever seen before.”

—— M. Gromov, “Spaces and Questions” 2000.
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Freiheitssatz for Random groups

In particular, if d < dy_1 ~
Freiheitssatz presentation.

—L_ then a.a.s. the presentation defining G,(m, d) is a
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Freiheitssatz for Random groups

In particular, if d < dy_1 ~

—L_ then a.a.s. the presentation defining G,(m, d) is a
Freiheitssatz presentation.

This bound is much larger than the previous bound (by the few relator model method)
1
~ e hm
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Freiheitssatz for Random groups

In particular, if d < dy_1 ~ ﬁ then a.a.s. the presentation defining Gy(m, d) is a
Freiheitssatz presentation.

This bound is much larger than the previous bound (by the few relator model method)
1

m2inm"

Is it true that, if d < d,, then a.a.s. every r-generated subgroup of Gy(m, d) is free?

The question is still open. If it is true, then at density d, < d < d,_1, a.a.s.
e every (r — 1)-generated subgroup of Gy(m, d) is free
® and Gy(m, d) is r-generated by not free,

so a.a.s. the rank of Gy(m,d) is r.
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Van Kampen diagrams

Definition
A van Kampen diagram with respect to a group presentation G = (X|R) is a finite, planar
(embedded in R?) and simply connected 2-complex D such that:

® Every face has a preferred boundary loop (a starting point and an orientation).

o FEvery edge is labeled by a generator x € X*.

® FEvery face is labeled by a relator r € R such that the word read on the preferred
boundary loop is r.




Van Kampen diagrams

Definition
A van Kampen diagram with respect to a group presentation G = (X|R) is a finite, planar
(embedded in R?) and simply connected 2-complex D such that:

® Every face has a preferred boundary loop (a starting point and an orientation).

o FEvery edge is labeled by a generator x € X*.

® FEvery face is labeled by a relator r € R such that the word read on the preferred
boundary loop is r.




Van Kampen diagrams

Definition

A van Kampen diagram with respect to a group presentation G = (X|R) is a finite, planar
(embedded in R?) and simply connected 2-complex D such that:

® Every face has a preferred boundary loop (a starting point and an orientation).
o FEvery edge is labeled by a generator x € X*.

® FEvery face is labeled by a relator r € R such that the word read on the preferred
boundary loop is r.

N

7
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Reduced van Kampen diagrams

A pair of faces in a van Kampen diagram reducible if they have the same label and there is a
common edge on their boundaries at the same position.

A van Kampen diagram is called reduced if there is no reducible pair of faces.
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Reduced van Kampen diagrams

A pair of faces in a van Kampen diagram reducible if they have the same label and there is a
common edge on their boundaries at the same position.

A van Kampen diagram is called reduced if there is no reducible pair of faces.

In the following, a 2-complex is finite, planar and simply connected.
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|soperimetric inequality

For a van Kampen diagram D,
|D| = the number of faces,
|0OD| = the boundary length.

Proposition (Gromov 1993, Ollivier 2004)
Let (Gy(m, d)) be a sequence of random groups at density d. Let K > 0 be an integer.

If d < 1/2, then for any s > 0 a.a.s. every reduced van Kampen diagram D of Gy(m, d) with
|D| < K satisfies the isoperimetric inequality

10D| > (1 — 2d — s)|DJ¢.
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The main question

Is the converse true?

If a 2-complex D with |D| < K (and |0f| < ¢ for any face f of D) satisfies the inequality

10D| > (1 —2d + s)|D|L.

does there exist (a.a.s.) a reduced van Kampen diagram of Gy(m, d) whose underlying
2-complex is D?
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The main question

Is the converse true?

If a 2-complex D with |D| < K (and |0f| < ¢ for any face f of D) satisfies the inequality

10D| > (1 —2d + s)|D|L.

does there exist (a.a.s.) a reduced van Kampen diagram of Gy(m, d) whose underlying
2-complex is D?

It is not true in general.
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Counterexample

Let (G¢(m, d)) be a sequence of random groups at density d = 0.4.
Let D be the following 2-complex.

0.8/ > (1 —2x 0.4) x 3¢ = 0.6/
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Counterexample

Let (G¢(m, d)) be a sequence of random groups at density d = 0.4.
Let D be the following 2-complex.

0.8/ > (1 —2x 0.4) x 3¢ = 0.6/ 0.2/ < (1—2x 0.4) x 20 = 0.4¢

D' is not a v.K. diagram of Gy(m, d), so D neither.

31/49



Geometrical form of 2-complexes

Consider a sequence of 2-complexes D = (Dy) of the same " geometrical form”.
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Geometrical form of 2-complexes

Consider a sequence of 2-complexes D = (Dy) of the same " geometrical form”.

i.e.
® They have the same topological form.
® For any face f of Dy, |0f] < (.

® The corresponding maximal arc lengths are A1/, ..., \iL. D
(4

(A maximal arc = a simple path passing by vertices of
valency 2, with endpoints of valency # 2.)

Azl

32/49



Geometrical form of 2-complexes

Consider a sequence of 2-complexes D = (Dy) of the same " geometrical form”.
i.e.

® They have the same topological form.
® For any face f of Dy, |0f] < (.

® The corresponding maximal arc lengths are A1/, ..., \iL.
D, A3l

(A maximal arc = a simple path passing by vertices of
valency 2, with endpoints of valency # 2.)

Definition (Density of a sequence of diagrams)

The density of D is

Do ady . Edge(Dy)
dens D — &=l (i, EOBSLE0) )
ens D 300 |Delt
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Critical density

According to the counterexample, every sub-2-complex should be considered.

Definition

The critical density of D is

dens (D) = Drpirb dens(D’).

Note that dens. D < dens D.
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Phase transition for the existence of diagrams

Let (Gy(m, d)) be a sequence of random groups at density d. Let K > 0.
Let D = (Dy) be a sequence of 2-complexes of the same geometrical form, with K faces.

® /fd >1—dens.(D), then a.a.s. there exists a reduced van Kampen diagram of G,(m, d)
whose underlying 2-complex is Dy.

® /fd <1—densc(D), then a.a.s. there is no reduced van Kampen diagram of Gy(m, d)
whose underlying 2-complex is Dj.
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Phase transition for existence of van Kampen diagrams

Corollary (of the first point)

Let D be a 2-complex with K faces and |0f| = { for every face f of Dy. For any s > 0, if
every sub-2-complex D’ of D satisfies the isoperimetric inequality

|0D'| > (1 —2d + s)|D'|¢,

then a.a.s. in Gy(m,d), there exists a reduced van Kampen diagram of whose underlying
2-complex is D.
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Applications: Phase transition for C'(\) condition

The random group G;(m, d) does not satisfy C’()\) if there exists a reduced van Kampen of
the following form D,.

(1—=MN)¢ (1= densc D =1- /2
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Applications: Phase transition for C'(\) condition

The random group G;(m, d) does not satisfy C’()\) if there exists a reduced van Kampen of
the following form D,.

(1—=MN)¢ (1= densc D =1- /2

Application (Gromov 1993, Bassino-Nicaud-Weil 2020)

Let 0 < A < 1. There is a phase transition at density d = \/2:
(i) Ifd < \/2, then a.a.s. Gg(m,d) satisfies C'(\).
(ii) If d > \/2, then a.a.s. Gy(m,d) does not satisfy C'()\).
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Applications: Phase transition for C(p) condition

Application

Let p > 2 be an integer. There is a phase transition at density d = 5
(i) Ifd < +1' then a.a.s. Gy(m,d) satisfies C(p).
(ii) Ifd > 517, then a.a.s. Gy(m,d) does not satisfy C(p).

—1—1

dens. D = ——
c P+1
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For non-planar 2-complexes

The phase transition for existence of diagrams holds for non-planar 2-complexes, with some
more conditions...
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For non-planar 2-complexes

The phase transition for existence of diagrams holds for non-planar 2-complexes, with some
more conditions...

The condition |D| < K is not enough and should be replaced by:

Definition (Complexity)

A 2-complex D is of complexity K if:
e |ID| <K.
® The number of maximal arcs of D is bounded by K.

® For any face f of D, the boundary path Of is divided into at most K maximal arcs.

Remark: If D is planar and simply connected with |D| < K, then it is with complexity 6K.
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Phase transition for existence of van Kampen 2-complexes

Let (Gy(m, d)) be a sequence of random groups at density d. Let K > 0.
Let D = (Dy) be a sequence of 2-complexes of the same geometrical form, of complexity K.

® /fd >1—densc(D), then a.a.s. there exists a reduced van Kampen 2-complex of
Gy(m, d) whose underlying 2-complex is Dy.

® /fd <1—densc(D), then a.a.s. there is no reduced van Kampen 2-complex of Gy(m, d)
whose underlying 2-complex is Dj.
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For non-planar 2-complexes

Let D = (Dy) be a sequence of (non-planar) 2-complexes of the same geometrical form, with
complexity K.

If Dy does not collapse to a graph, then there exists a sub 2-complex such that every edge is
adjacent to at least 2 faces. So dens. D < % <1l-—d.
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For non-planar 2-complexes

Let D = (Dy) be a sequence of (non-planar) 2-complexes of the same geometrical form, with
complexity K.

If Dy does not collapse to a graph, then there exists a sub 2-complex such that every edge is
adjacent to at least 2 faces. So dens. D < % <1l-—d.

Proposition

If Dy is the underlying 2-complex of a reduced van Kampen 2-complex of Gy(m, d) with
d < 1/2, then Dy collapses to a graph.
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5. Open questions
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Existence of surfaces with a fixed genus

Let S = (S¢) be a sequence of 2-complexes of the same geometrical form. If Sy is a surface of
genus g with |Sy| < K, then it is with complexity 10gK, and we have

1
dens: § < 5

Proposition

Let (Gy(m, d)) be a sequence of random groups at density d. Let g >0, K > 1.

Let g > 0. If d < 1/2, then a.a.s. Gy(m,d) does not contain any surface Sy of genus g with
|Se] < K.
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Existence of surfaces with a fixed genus

Can we remove the condition |S;| < K?

Given g > 0. Is it true that, if d < 1/2, then a.a.s. Gy(m,d) does not contain any surface
subgroup of genus g?
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Existence of surfaces with a fixed genus

Can we remove the condition |S;| < K?

Given g > 0. Is it true that, if d < 1/2, then a.a.s. Gy(m,d) does not contain any surface
subgroup of genus g?

It is true for g = 0, because a.a.s. the presentation of Gy(m, d) is aspherical.
It is true for g = 1, because a.a.s. the G,(m, d) is hyperbolic (contain no Z2).

43/49



Existence of surfaces with a fixed genus

Can we remove the condition |S;| < K?

Given g > 0. Is it true that, if d < 1/2, then a.a.s. Gy(m,d) does not contain any surface
subgroup of genus g?

It is true for g = 0, because a.a.s. the presentation of Gy(m, d) is aspherical.
It is true for g = 1, because a.a.s. the G,(m, d) is hyperbolic (contain no Z2).

The genus g should be given in advance (i.e. should not depend on /).

Theorem (Calegari-Walker 2015)

If d < 1/2, then a.a.s. Gy(m,d) contains surface subgroups of genus g = O({).
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The graph model of random groups

Let F,, be a free group with a generating set X, = {x1,...,Xm}-

Let T be a graph labeled by X, then
Fm/T := Fp/{{words of loops of I'))

defines a group.

If I is a randomly labeled graph, then Fp,/I is a random group.
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The graph model of random groups

Ramanujan graph:

Let p, g > 3 be prime numbers congruent to 1 modulo 4, p < g, with the Legendre symbol

P) — _
q—l.

C(p, q) = the Cayley graph of PGLy(F,) with a certain set of (p + 1)/2 generators.
C(p,q,j) = divide every edge of C(p, q) into j edges.
[(p,q,j) = randomly (non-reduced) label of C(p, q,;) by X .

Gq(m') pv./) = Fm/r(p7 qu./)
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The graph model of random groups

Ramanujan graph:

Let p, g > 3 be prime numbers congruent to 1 modulo 4, p < g, with the Legendre symbol

Py — _
q—l.

C(p, q) = the Cayley graph of PGLy(F,) with a certain set of (p + 1)/2 generators.
C(p,q,j) = divide every edge of C(p, q) into j edges.
[(p,q,j) = randomly (non-reduced) label of C(p, q,;) by X .

Gq(m') pv./) = Fm/r(p7 qu./)
We are interested in the asymptotic behaviors of the sequence of random groups

(Gq(m7 P,_I.))q prime,q#p-
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The graph model of random groups

Theorem (Gromov 2003)

For any m > 2 and any p > 3, there exists jo large enough such that, for any j > jo, a.a.s.
(when q — o0) the random group Gq(m, p,j) is non-elementary hyperbolic.
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The graph model of random groups

Theorem (Gromov 2003)

For any m > 2 and any p > 3, there exists jo large enough such that, for any j > jo, a.a.s.
(when q — o0) the random group Gq(m, p,j) is non-elementary hyperbolic.

Is there a phase transition for this property?
More precisely, does there exist a function ¢ = c¢(m, p,j) such that
(i) if ¢ > 1, then a.a.s. Gq(m, p,j) is trivial,

ii) ifc <1, then a.a.s. Gy(m, p,j) is non-elementary hyperbolic?
q J y ny
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A guess on ¢ = ¢(m, p, J)

Let pq be the girth (smallest simple cycle length) of I'(p, q,).
Let R, be the set of words read on simple cycles of '(p, g, /) of length pgq, then dens R = (Ry)
is the density of relators.
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A guess on ¢ = ¢(m, p, J)

Let pq be the girth (smallest simple cycle length) of I'(p, q,).
Let R, be the set of words read on simple cycles of '(p, g, /) of length pgq, then dens R = (Ry)
is the density of relators.

Let X, be the (fixed) set of non-reduced words of length pq that are trivial in Fp,.

Does the intersection formula hold between R and X (in B = (B;))?
If it does, is it true that the phase transition happens at

c(m, p,j) = densR -+ dens X
7
= Y logym(p) + logy,(2v2m —1) =17
) (known)
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Parallel geodesics and injectivity radius

Definition

Two bi-infinite geodesics in a hyperbolic space are called parallel if they have the same pair of
limit points at the boundary and they have no intersection.

A set of k > 2 bi-infinite geodesics are called parallel if they are pairwise parallel.
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Parallel geodesics and injectivity radius

Definition

Two bi-infinite geodesics in a hyperbolic space are called parallel if they have the same pair of
limit points at the boundary and they have no intersection.
A set of k > 2 bi-infinite geodesics are called parallel if they are pairwise parallel.

Proposition (Gruber-Mackay 2018)

Ifd < H%E/H, then a.a.s. there exists an integer k = k(d) such that the number of parallel
geodesics in a random triangular group at density d is bounded by k.
In particular, a.a.s. the injectivity radius (smallest stable length) is at least 1/k.
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Parallel geodesics and injectivity radius

In the Gromov density model:

Proposition

If d < 1/4, then a.a.s. the number of parallel geodesics in a random group at density d is
bounded by

2d
1—4d

In particular, a.a.s. the injectivity radius is at least 1/k.

k=2+

49 /49



Parallel geodesics and injectivity radius

In the Gromov density model:

Proposition

If d < 1/4, then a.a.s. the number of parallel geodesics in a random group at density d is

bounded by
2d

1—4d

In particular, a.a.s. the injectivity radius is at least 1/k.

k=2+

Is there a phase transition?

Ifd > %, is it true the number of parallel geodesics is not uniformly bounded (when ¢ — o) ?
(i.e. for any k > 0 a.a.s. the number of parallel geodesics is larger than k.)
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